

FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER ENGINEERING

A REAL-TIME WATER QUALITY MONITORING SYSTEM BY

MAGEZI DANI BU/UG/2017/1860

TEL: 0756200819

EMAIL: magezidandaniz@gmail.com

SUPERVISOR: Dr. GODLIVER OWOMUGISHA

A FINAL YEAR PROJECT REPORT SUBMITTED TO THE DEPARTMENT OF
COMPUTER ENGINEERING IN PARTIAL FULFILLMENT FOR THE AWARD OF A
BACHELOR OF SCIENCE IN COMPUTER ENGINEERING OF BUSITEMA UNIVERSITY

ABSTRACT

Since the 21st century, there has been lots of inventions, but at the same time, pollutions and because of this, there is no safe drinking water for the world's pollution. water utility operators are vested with task of extracting water, treating it and supplying it to the customers. Most water quality operators with national water and sewerage cooperation not being exclusive follows a conventional method of monitoring water quality where samples are manually collected from different suitable locations, taken to the lab to be tested and recorded. This method is however inefficient because its time consuming and tiresome and doesn't give data in real time.

With the advancement in technology, the internet of things has been incorporated into water quality monitoring systems.

The real-time water quality monitoring system makes the use of sensors which take readings for water quality, processes them using a micro-controller to which the sensors are always in constant communication and finally displays the results to an LCD onsite, causes a buzzer to sound if the water quality parameters are out of the range, and also send the water quality information to a database of a website.

DECLARATION

I hereby declare that all the work material portrayed in this final year project is my original work
except where explicit citation has been made and it has not been presented to any Institution of
higher learning for any academic award.

Sign:	 	 . . .	 		 							
Date:												

APPROVAL

I approve the project "A real-time water quality management system" that was done under my supervision.

Dr. Godliver Owomugisha

Department of Computer and Electrical Engineering

Signature:

100

Date:13/03/2022......

TABLE OF CONTENTS

		4
m	ter	١T٩
11	LUI.	LLL

ABSTRACT	i
DECLARATION	ii
APPROVAL	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF ABBREVIATIONS	ix
CHAPTER ONE: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Objectives	3
1.3.1 Main Objective	3
1.3.2 Specific Objectives	3
1.4 Justification	3
1.5 Scope	3
1.5.1 Technical Scope	3
1.5.2 Geographical Scope	4
CHAPTER TWO: LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Water quality parameters	6
2.2.1 pH	ϵ
2.2.2 Temperature	ϵ
2.2.3 Turbidity	7
2.2.4 Conductivity	7

2.2.	5 Total dissolved solids	7
2.3 Exi	isting water quality monitoring systems	8
2.4 Pro	pposed System	10
СНАРТ	ER THREE: METHODOLOGY	12
3.1 Int	roduction	12
3.2 Re	quirements Elicitation	12
3.3 Da	ta Collection Methods	12
3.3.	1 Literature Review	12
3.3.	2 Interviews	12
3.3.	3 Other sources of data	12
3.4 Re	quirement Analysis	13
3.4.	1 Functional requirements	13
3.4.	2 Non-functional requirements	13
3.5 Sys	stem Design	13
3.5.	1 Hardware tools	13
3.5.	2 Software Tools	14
3.5.	3 System Block Diagram	14
3.6 Sys	stem Implementation	14
3.6.	1 Data Acquisition Layer	15
3.6.	2 Data Transmission Layer	15
3.6.	3 Application Layer	15
3.7 Tes	sting and Validation	15
3.7.	1 Unit testing	15
3.7.	2 Integration testing	16
3.7.	3 System testing	16
CHAPT	ER FOUR	17
4.1	System requirements and Architecture	17
4.1.	1 System Architecture	17
4.1.	2 System requirements	17
4.1.	3 Functional Requirements	18
4.1.	4 Non-Functional Requirements	18
4.2	System Design	18
12	System components	20

	4.3.	1 Arduino nano	20
	4.3.2	2 TDS Sensor	20
	4.3.3	3 Turbidity sensor	21
	4.3.4	4 PH sensor	22
	4.3.	5 Temperature sensor	23
	4.3.6	5 Buzzer	23
	4.3.	7 Website	24
	4.4	Logical design of the system.	24
5	CH	APTER FIVE: IMPLEMENTATION AND TESTING	25
	5.1	Hardware section	25
	5.2	Software section	25
	5.3	System Testing	26
	5.3.	1 Unit testing	26
	5.3.2	2 Integration testing	27
	5.3.3	3 System testing	28
6	CH	APTER SIX: RESULTS AND DISCUSSION	29
	6.0	Summary of my work	29
	6.1	Critical analysis/appraisal of the work	29
	6.2	RESULTS AND DISCUSSION	30
	6.3	Recommendations.	30
	6.4	Conclusion	30
	6.5	REFERENCES	31

LIST OF FIGURES

Figure 1:System block diagram	14
Figure 2:System Architecture	17
Figure 3:System design	19
Figure 4:Arduino nano micro-controller	20
Figure 5:TDS Sensor	21
Figure 6: Turbidity Sensor	22
Figure 7: Temperature Sensor	23
Figure 8: Buzzer	23
Figure 9:Logical design of the system	24
Figure 10:pH for different water samples	26
Figure 11:Turbidity for different water samples	26
Figure 12: Water quality not safe displayed on LCD	27
Figure 13: Water quality safe displayed on LCD	27
Figure 14:Website showing the different water quality parameters.	28
Figure 15: Website with turbid water.	28

LIST OF TABLES

Table 1:Comparison of the existing system and the developed system

29

LIST OF ABBREVIATIONS

MoWE-Ministry of Water and Environment

NWSC-National Water and Sewerage Cooperation

IoT-internet of things

COD-Chemical Oxygen Demand

BOD-Biological Oxygen Demand

NTU- Nephelometric Turbidity Units

TDS-Total Dissolved Solids

HTML-Hyper Text Markup Language

CSS-Cascading Style