

FACULTY OF ENGINEERING DEPARTMENT OF AGRICULTURAL MECHANIZATION AND IRRIGATION ENGINEERING

DESIGN AND CONSTRUCTION OF A SIMPLE HAND OPERATED SUGARCANE CRUSHER

BY

MUHUMUZA JIMMY BU/UG/2009/12

jimtex05@gmail.com

0777032828

Supervisors

DR.WANDERA CATHERINE
MR.SALANJAYE W. WILBER FORCE

A Research Report presented in Partial Fulfillment of the Requirements for the Award of a Bachelors Degree in Agricultural Mechanization and Irrigation Engineering.

May 2013

ABSTRACT

Uganda's economy primarily depends on agriculture with about 80-90% of the population employed in farming accounting to 22% of the Gross Domestic Product (GDP). Sugarcane is one of the major commercial crops grown and processed in Uganda for both local consumption and export. Processing sugarcane is beneficial to the society and the country at large due to its many products which include sugar, alcohol, residues called bagasse is used as an animal feed a raw material for paper industries, as agricultural mulch among others.

There are large numbers of low income sugar cane farmers in Uganda who grow small acreages of sugar cane for subsistence use and for sale to earn family income but find it challenging to use electrical equipment which is expensive to purchase and maintain and thus not practical for the scale of production. These farmers try to utilize machines that use diesel engines which in turn prove to be expensive due to the cost of diesel. Further the existing manual crushers are relatively expensive, require a lot of energy to operate, and produce relatively poor quality juice. The low income sugarcane farmers of Uganda therefore need a low cost and affordable manual sugarcane crusher that can produce high quality juice without need for electricity and skills so as to improve incomes of the farmers and enhance livelihood of the farmers' families. The objective of this project is therefore to design, fabricate and test for the efficiency of hand operated sugarcane crusher

The design of various components took place through careful analysis of the forces acting on the them as this enabled in proper selection of the force resistant materials plain carbon and mild steel materials plus Aluminium were the major ones used in the fabrication of the prototype due to their suitability for the project and availability. Engineering drawings produced were used in the fabrication of the different components of the machine after which assembly was carried out through welding and use of bollts and nuts.

The prototype was tested for its efficiency and capacity and the results indicated an overall efficiency of 65% and a capacity of 73kg/hr. The costing of the machine was 593,000 Uganda shillings.

ACKNOWLEDGEMENT

First, great thanks goes to the almighty God who has enabled me reach this far in my academics. Further, i extent my sincere thanks to my supervisors Dr. Catherine Wandera and Mr. Salanjaye William Wilberforce for the guidance and support and their time they offered to me throughout the period i was doing this project.

In addition, i would like to thank the management of AEATREC -Namalere mostly the workshop chief technician Mr.Ssasa Richard for accepting me to use their machines in the production of the prototype, may the almighty reward you so much.

Last but not least, more appreciation goes to NARO techicians and class mates that rendered support to me encouraged me and so much cared to see that i finish my project.

DEDICATION

With great honor i would like to dedicate this report to my dear parents Mr. Barigye John and Mrs. Natukunda Sikola for their financial and moral support.

DECLARATION

I **Muhumuza Jimmy** solemnly declare that the information contained in this report is mine and has not been presented to any University or higher institution of learning for any academic award.

Signature....

Date. 08/06/13

BUSITEMA UNIVERSITY LIBRARY

CLASS No.:....

ACCESS NO. FET OSUL

APPROVAL

This research project report has been submitted for examination with approval from the following supervisors.

Dr. Catherine Wandera
Signature
Mr. Salanjaye William Wilberforce
Signature
Date

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	. ii
DEDICATION	iii
DECLARATION	iv
APPROVAL	. v
LIST OF FIGURES	. x
LIST OF TABLES	xii
LIST OF ACRONYMSx	iii
CHAPTER ONE	. 1
1.0 INTRODUCTION	. 1
1.1 Background	. 1
1.2 Problem statement	. 2
1.3 Objectives	. 2
1.3.1 Main objective	. 2
1.3.2 Specific Objectives	. 2
1.4 Justification	. 3
1.5 Purpose of the study	. 3
1.6 Scope of study	. 3
CHAPTER TWO	. 4
2. 0 LITERATURE REVIEW	. 4
2.1 Products of Sugarcane Processing	. 4
2.1.1 Sugarcane juice	. 4

	2.1.2	Cane Sugar	4
	2.1.3	Bagasse	5
	2.1.4	Dried Filter-cake or Press-Mud	5
	2.1.5	Molasses	5
	2.2 Sug	arcane processing	5
	2,2.1	Sugarcane crushing.	5
	2.2.2	Methods of crushing sugarcanes that exist	6
	2.2.3	Electrical Method	6
	2.2.4	Diesel engine powered sugarcane crusher	8
	2.2.5	Animal powered crushers.	9
	2.2.6	Manual operated sugarcane crushing	9
	2.2.7	Existing Manual sugarcane crushers	. 10
	2,2.8	The Trapiche	10
	2.2.9	Two roller sugarcane crusher	. 11
	2,2.1	SLM079 model manual sugarcane crusher	.11
	2.2.1	Advantages of manual cane crushers	. 12
	2.2,1	2 Limitations of manual sugarcane crushers	. 12
0	HAPTE	R THREE	. 13
	3.0 ME	THODOLOGY	. 13
	3.1 Intr	oduction	. 13
	3.2 Cor	siderations for the Design of the Manually Operated Sugarcane Crusher	.13
	3.3 Cor	ceptual Design of the Manually Operated Sugarcane Crusher	. 13
	3.3.1	Components of the Sugarcane Crusher	. 13
	(a)	Crushing rollers	
	<i>(b)</i>	The handle	
	(c)	Base tray/chute	. 14
	(d)	The shaft:	
	(e)	The frame	
		Description of the Mode of Operation	

3.4 Determination of Required Torque for crushing operation	16
3.4.1 Calculation of Minimum Torque Required to Crush Sugarcane	16
3.4.2 Calculation of Input Torque Delivered through Manual Operation	
3.5 Design of the Different Components of the Sugarcane Crusher	19
3.5.1 Design of the Crushing Rollers	19
(a)Determination of the diameter of the rollers	19
(b) Design of the handle shaft	26
(c) Design of the key	31
3.5.2 Forces acting on the key	32
(d) Selection of the Gears	34
(e)Bearing Selection	37
(f) Design of the handle	39
(g)Design of the chute/juice collector	41
3.6 Fabrication of the Prototype	42
3.6.1 Material Selection	42
3.6.2 Construction Rollers	43
3.6.3 Construction of Shafts.	44
3.6.4 Fabrication of Bushes	
3.6.5 Selection of Transmission gears	45
3.6.6 Selection of Bearings	46
3.6.7 Fabrication of the frame	46
3.6.8 Fabrication of The handle	47
3.6.9 Fabrication of the Juice collector	47
3.7 Tools used in the fabrication of the machine	48
3.8 Assembly of the various machine components	50
3.9 Testing of the Prototype	50
3.9.1 Tools and Equipment used for testing	50
3.9.2 Procedure for testing	51
3.9.3 Care and Maintenance of the machine	53
3.9.4 Environmental effects due to the use of the machine	53

CHAPTER FOUR	54
4.0 RESULTS	54
CHAPTER FIVE	55
5.0 CONCLUSION AND RECOMMENDATIONS	55
5.1 CONCLUSION	55
5.2 RECOMMENDATIONS	55
REFERENCES	56
APPENDICES	58
Appendix 1: Costing of the prototype	58
Appendix 2: Recommended design life for bearings	59
Appendix 3: Moduli and Strength of a few selected materials	60
Appendix 4: Dimensions (inches) for some standard square and rectangular-key a	pplications
4	61
Appendix 5: Gear and Pinion relationship	62
Appendix 6: Engineering drawings of different components	63
Annendix 7: Fabrication of the prototome	60

LIST OF FIGURES

Figure 2-1:Sugarcane juice as it is served.	4
Figure 2-2: The ZAMA sugarcane juice extractor	7
Figure 2-3: The abamaster SCJE 2000 model	7
Figure 2-4: Electric cane crusher model cane pro star	8
Figure 2-5: A Diesel powered cane crusher with three vertical rollers.	9
Figure 2-6: Animal powered crusher ©Neil Cooper/Practical Action	9
Figure 2-7: The tripiche	10
Figure 2-8: Sugarcane vendors in Dhaka	. 11
Figure 2-9: Portable table manual cane crusher.	. 11
Figure 3-1: Conceptual design of the sugarcane crusher	15
Figure 3-2: Triangular arrangement of the rollers	20
Figure 3-3: Determination of roller diameter.	20
Figure 3-4: Shows forces acting on the key. (Shigley, 2006)	. 32
Figure 3-5: Key dimensions in millimeters	. 34
Figure 3-6: Forces acting on the Pinion and Gear mechanism	36
Figure 3-7: Handle sketch	. 41
Figure 3-8: Machined rollers with fitted shafts	44
Figure 3-9: Shaft assembly	45
Figure 3-10: Gears with bushes	45
Figure 3-11: Pillow block bearings	46
Figure 3-12: Frame dimensions	46
Figure 3-13:The frame	47
Figure 3-14:Fabricated handle	47
Figure 3-15: Cutting of the galvanised iron sheet.	48
Figure 3-16:Prototype before Assembly	50
Figure 3-17:Prototype after assembly	50
Figure 6-1: the handle	63
Figure 6-2: The shaft	64
Figure 6-3: The frame	65

Figure 6-4: The roller	62
Figure 6-5: Roller	66
Figure 6-6: Figure clearance adjusting plate	67
Figure 7-1:Clearance adjustment gear mechanism	68
Figure 7-2:Top view of the machine	68
Figure 7-3: Power unit showing the pinion and gear	68
Figure 7-4:Spraying the prototype	68
Figure 7-5: Front view	68
Figure 7-6: Hind view of the machine	68
Figure 7-7: Grooving the roller	69
Figure 7-8: Working on the bushes	69
Figure 7-9: Drilling through the frame	69
Figure 7-10:Cast rollers before machining	69
Figure 7-11: Keywaying the shaft	69
Figure 7-12: Machining the roller	69

LIST OF TABLES

Table 3-1: Measurements of the Diameters of the green and purple canes	16
Table 3-2: Materials selected and the reason for selection	43
Table 3-3: Shows the basic tools found in the machine workshop that were used	48
Table 3-4: Summarizing the fabrication of the main components of the machine	49
Table 4-1: Results of the testing.	54
Table 6-1: Showing the total costing of the machine	58
Table 6-2: Illustrates the recommended design life for bearings	59
Table 6-3: Moduli and strength of materials	60
Table 6-4: Showing standard shafts	61
Table 6-5: Relationship between gear and pinion for gear train one (Mott, 1999)	62

LIST OF ACRONYMS

GDP - Gross Domestic Product

UBOS - Uganda Bureau of statistics

SCOUL - Sugar Cooperation of Uganda

NARO - National Agriculture Research Organization

FAO - Food and Agriculture Organization

AEATREC - Agricultural Engineering and Appropriate Technology Research Centre

USCTA- Uganda Sugarcane Technologists' Association

Kg-kilogram

hr- Hour

g - Acceleration due to gravity

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background

Agriculture is the backbone of Uganda's economy with about 80-90% of the population employed in farming accounting to 22% of the Gross Domestic Product (GDP). (Uganda Bureau of Statistics (UBOS), statistical abstract 2012). Sugarcane (Saccharum Officinarum) is one of the major commercial crops grown and processed in Uganda for both local consumption and export. Sugarcane is a tropical, perennial grass that belongs to the family of grass called Poaceae and genus Saccharum. The sugar cane plant forms lateral shoots at the base to produce multiple stems, typically three to four meters high and about 5 cm in diameter. Sugarcane has long been grown in Uganda in very small quantities, but commercial production dates from 1921 when planting began at Lugazi (The Geography of tea and sugar production in Uganda, O'Connor A.M). Sugar cane is mostly grown in Eastern Uganda in the districts of Iganga, Jinja, Kamuli and also in Hoima and Masindi districts in Western Uganda. Sugarcane consumption in Uganda is estimated to be 9kg per head per annum with a predicted sugarcane consumption per annum expected to increase by 1% over the next 15 years (USCTA Annual Report 2009.). There are existing large scale sugar cane processing industries in Uganda, namely Kakira sugar works, kinyara sugar works, Mayuge Sugar Works and Sugar Cooperation of Uganda Ltd (SCOUL).

The first step in sugarcane processing involves juice extraction through crushing of the sugar cane. The large scale sugar processing industries are engaged in processing of sugarcane using sophisticated modern equipment which utilizes electrical power for juice extraction and further processing of the extracted juice. There are also large numbers of low income sugar cane farmers in Uganda who grow small acreages of sugar cane for subsistence use and for sale to earn family income. The modern sugar cane processing equipment is expensive and not practical for the scale of production of the local small scale sugar processors. Thus these small scale sugar cane farmers face a big challenge to process their sugarcanes at their level of production. The prevailing sugarcane crushing methods used by the small scale sugarcane farmers include use of machines that utilize diesel engines that are expensive to local farmers in terms of purchase and

REFERENCES

- Abamaster Incorporated (2010), counter top Sugarcane Juice Extractor.
- Anon, http://www.macalester.edu/geography/agr/journals/196, accessed on 11th-10-12
- Anon, http://www.jstor.org/stable/621700, accessed 5th/10/12
- Anon., Sugar production from cane sugar, www.appropedia.org, Accessed 2nd/10/12
- Bhandari V.B., (2007), Design of Machine Elements, Second Edition, ISBN 0-07-061141-6,978-0-07-061141-2, Published by McGraw-Hill Companies
- Bhandari V.B., (2007), Introduction to machine design, 8th edition, published by Tata Mc Graw Hill publishing company limited, ISBN-13:978-0-07-043449-3.
- Budynas-Nisbett, (2006), Shigley's Mechanical Engineering Design, Eighth Edition, ISBN: 0-390-76487-6, published by McGraw Hill
- com/products/Sugar-Cane-Juicer-Machines-Presser-Counter-Top-model%2C-1- HP.html
- DEP agro Machineries Private Limited, http://www.dep agro machines.com
- Hanna L. W. (1970), Climatic Influence on Yields of Sugar-Cane in Uganda
- http://www.alibaba.com/productgs/575769020/2012_Best_Selling_Manual_Sugarcane_Juicing/s howimage.html
- http://zzditai.en.alibaba.com
- Kaul R.N. and Egbo C.O, (1985), Introduction to Agricultural Mechanization, Macmillan, London, England, UK
- Khurmi R.S and Gupta J.K., (2005), Text book of machine design, Fourth Edition.
- Methods of crushing sugarcane http://www.ehow.com > Business, accessed on 15th-10-12
- O'Connor A.M., (1965), East Africa Geography; The geography of tea and sugar production in Uganda, Revision number 3, page 3
- Rika Susan (2010), Article: A Household Sugarcane Juicer Only a Sweet Dream?
- Spotts M.F. (1985), Design of Machine Elements, 6th edition, Prentice Hall, Englewood Cliffs, NJ, USA
- Spotts M.F, Shoup T.E and Hornberger L.E., (2003), Design of Machine Elements, 8th Edition, ISBN 0-13-048989-1, published by Pearson Education, Inc.

Uganda Bureau of Statistics, (2012), Statistical *abs*tract, UBOS, Kampala, Uganda http://www.ubos.org/2012%20Census%20Final%20Reportdoc.pdf.

Wikipedia, (2010), Sugarcane, http://en.wikipedia.org/wiki/Sugarcane

www.abamaster.com/productSpecWeb.php?modelId=2000 www.ezinearticles.com/?expert=Rika_Susan.

Zama Enterprise (2010), Sugarcane Juicer Machine Presser, www.zamaenterprise.