

FACULTY OF ENGINEERING

DEPARTMENT OF AGRICULTURAL MECHANISATION AND IRRIGATION ENGINEERING

DESIGN AND CONSTRUCTION OF CASSAVA STAKE CUTTING MACHINE.

\mathbf{BY}

KWEMBOI SADAM

BU/UP/2013/155

TEL: +256 789754622/0758682557

EMAIL:kwemboisaddam@gmail.com

SUPERVISORS

MR. KAVUMA CHRIS

DR. CATHERINE WANDERA

Project Report Submitted As A Partial Fulfillment Of The Requirements For The Award

Of Bachelor's Degree In Agricultural Mechanization And Irrigation Engineering At

Busitema University

ABSTRUCT.

Cassava is one of the most important food crops grown in various parts of Uganda; - Several varieties of cassava are mostly grown due to tolerance in both poor soils and unreliable weather conditions. Cassava is a propagated plant with its stems being the leading source of planting material which affects the yields and results in low productivity depending on the method of preparation, Quality of stem and the time it's needed. The common method used for cutting is manual labor using a panga, machetes among a few which is labor intensive, time consuming and leads to drudgery that leads to unequal and bruised nodes on stakes which lower the stake viability which intern leads to low productivity.

This project undertook the development of a motorized cassava stake cutter with the aim of reducing on the drudgery during cutting operations and increasing the timeliness production of quality stakes. The main objective of the project was to design and construct a cassava stake cutter which will meet the production of the required stakes for mechanized and commercial farming per day. In achieving the above objective, basic engineering principles and the physical properties of cassava stems were considered in the design of the various components of the stake cutter. Appropriate engineering drawings were produced using solid edge and the designed stake cutter was constructed at Munyegera Workshop using the locally available materials (mainly mild steel) and common production technologies, including cutting, bending, welding, etc.

The performance of the constructed prototype was determined by the no of stems produced and there quality in terms of length bruised nodes etc. From the tests performed, it was found that the machine output capacity was 7500 stakes per hr., with up to 75% of the machine efficiency and 72% of the cutting efficiency. Thus the use of the machine has a big role in reducing drudgery and making farming attractive; thereby improving crop production and alleviating the labor shortages experienced during cutting. This increases the income and stem availability of poor resource farmers in Uganda.

DEDICATION

This final year project report is dedicated to my dear Mother, Mrs. Alima Mustapher who have struggled financially throughout my life and studies to see that I achieve my career objectives. May the Almighty God richly bless and reward her cordially.

ACKNOWLEDGEMENTS

I extend thanks with gratitude to ALLAH the Almighty, with my appreciation to the management of Busitema University, faculty of engineering for considering final year projects as one core activity for strengthening engineering skills in her students. Thanks to the head of department Agricultural Mechanization and Irrigation Engineering, Mr. Kavuma Chris and all the lecturers, without their lectures and general guidance, inter-relating theory with practical would be impossible With heartfelt gratitude, I appreciate the personal contributions of dr. Catherine Wandera and Mr. Kavuma Chris for their guidance during the course of writing this project and finally to all the technicians of Busitema university, my colleagues and friends and those who stood by me during the course of study at Busitema University.

DECLARATION

I KWEMBOI SADAM declare that the work in this report was carried out in accordance with the Regulations of Busitema University. The work is original except where indicated by special reference in the text and no part of the project has been submitted to any other university for examination and degree award. Any views expressed in the project are those of the author and in no way represent those of Busitema University.

Signature	 	 •		 •	•	 	•		 	 	•	•	•
Date	 						 						

APPROVAL

This is to certify that KWEMBOI SADAM prepared his final year project under the supervision of the following lecturers.

SUPERVISORS	
MR. KAVUMA CHRIS.	Signature
	Date
DR. CATHERINE WANDERA	. Signature
	Date

ACRONYMS.

(NARO)-National Agricultural Research Organization

OECD-Organization for Economic and Commercial Development.

(USA)-United States of America

FAO-food and Agricultural Organization

IITA,-international institute of tropical Agriculture

(ZECC)- Zero Energy Cool Chamber

TABLE OF CONTENTS

Contents

ABSTRU	CT	.i
DEDICA'	ΓΙΟΝ	ii
ACKNOV	VLEDGEMENTSi	ii
DECLAR	ATIONi	V
APPROV	AL	V
ACRONY	'MS	⁄i
TABLE (F CONTENTSv	ii
LIST OF	FIGURES	ίi
LIST OF	TABLES	ιi
APPEND	DICESx	ii
CHAPTE	R ONE	1
1.1	BACKGROUND	1
1.2	PROBLEM STATEMENT	3
1.3 J	USTIFICATION OF THE PROJECT	4
1.4	DBJECTIVES OF THE STUDY	
1.4.1	Main Objective	4
1.4.2	Specific Objectives	4
	SCOPE OF THE STUDY	
CHAPTE	R TWO	5
2.1	LITERATURE REVIEW	5
2.1.1	Cassava Growing.	5
2.1.2	Cassava planting materials	5
2.1.3	Varieties of cassava in Uganda.	7
2.1.4	Uses of Cassava in Uganda.	7
2.1.5	Cassava production in Uganda	7
2.1.6	Yield and productivity	8
2.2	Quality of Cassava Stem cuttings.	8
2.2.1	Age of stem cuttings.	8
2.2.2	Stem diameter	
2.2.3	Number of nodes	
2.2.4	Health of stems	9
2.2.5	Original position of planting material	0

2.2.6	Storage methods of cassava cuttings	10
2.3 Cu	ntting Geometry	11
2.3.1	Mechanics of cutting	11
2.4 A	vailable technologies currently used in cassava stems multiplication	12
2.4.1	The circular blade saw electric motor cassava stem cutting machine	12
2.4.2	Tradition method of cutting	13
2.4.3	Multi Compartment Tray	13
2.4.4	A Nursery Seedbed	14
CHAPTER	THREE	15
3.1 M	ETHODOLOGY	15
3.1.1	Project Flow	15
3.1.2	Mode of operation of the stem cutter	15
3.2 De	esign of various machine components	16
3.2.2	Design considerations of the proposed cassava stem cutter:	16
3.2.3	Design of the hopper	16
3.2.4	The cutting chamber	16
3.3 Cu	atting force	17
3.3.2	Design of the blades	18
3.3.3	The approximate frontal area of the knife edge	18
3.3.4	The knife edge force	18
3.3.5	The cutting power required.	18
3.4 De	esign of pulleys	18
3.4.2	The speed reduction mechanism.	19
3.4.3	The main shaft speed	19
3.4.4	Cam speed	19
3.5 Be	elt tension	20
3.5.2	Centre between the pulleys	20
3.5.3	Determination of the belt length	20
3.6 Sh	aft design	20
3.6.2	Assumptions considered in the shaft design	20
3.6.3	Determination of the maximum bending moment	20
3.6.4	Maximum shear stress in the shaft	20
3.6.5	Estimation of maximum torque acting on the shaft	21
3.6.6	The diameter of the shaft	21
27 D	ocian of the frame	21

3.8	Bearing Selection	22
3.9	Prototype fabrication and joining process	23
3.8	.1 Material selection	23
3.8	Fabrication of the prototype	24
3.8	.3 Joining process	25
3.8	.4 Finishing process	25
3.9	Efficiency of the machine	25
3.9	.1 Output capacity	25
3.9	.2 Machine efficiency	25
3.9	.3 The cutting efficiency	25
3.10	Economic evaluation of the machine	25
CHAP	TER FOUR	27
4.1	RESULTS AND DISCUSSIONS	27
4.1	.1 Cassava stem characteristics	27
4.1	.2 The Ultimate load at bending failure is given	27
4.2	The cutting force	28
4.2	.1 The frontal area of the knife	28
4.2	.2 The knife edge force.	28
4.2		28
4.3	Pulley design	29
4.3	.1 The speed reduction mechanisms	29
4.4	Determination of the belt tension'	29
4.4	.1 The Centre distance between the two pulleys	29
4.4	.2 Determination of Nominal Length of the Belt	30
4.5	Shaft Design	30
4.5	.1 Analysis of the forces acting on the shaft	31
4.5	.2 Calculation of the torque acting on the shaft	32
4.6	Efficiency and Economic Evaluation of the Machine	34
4.7	Economic evaluation of the machine	35
4.7	.1 Evaluation techniques	35
4.8	Discussions:	38
CHAPT	TER FIVE	39
5.1	CHALLENGES, CONCLUSIONS AND RECOMMENDATIONS	39
5.1	.1 Challenges:	39
5 1	2 Conclusions	39

5.1.3	Recommendations	39
REFFEREN	CES	40
APPENDICE	F S	41

LIST OF FIGURES.

Figure 1: cassava plant	Ĺ
Figure 2: preparation of cassava stake	2
Figure 3: Various cutting tools	3
Figure 4: Shows the cassava stakes in sacks	5
Figure 5: Shows the cassava stem details)
Figure 6: position of quality stems)
Figure 7: the cutting geometry	l
Figure 8: The relationship of cutting geometry	2
Figure 9: The circular blade saw electric motor cassava stem cutting machine12	2
Figure 10: Shows manual cutting of the cassava stems	3
Figure 11: The machine details and components	5
LIST OF TABLES.	
Table 1: gives estimates of cassava flour consumption in 1997	3
Table 2: Factor of safety for a steady load factor of different materials21	l
Table 3: Principal dimensions for radial ball bearings	2
Table 4: the material selection criteria for various machine components	3
Table 5: shows different fabrication methods and tools used	1
Table 7: Ultimate & yield strength of various mild steel products)
Table 6: Coefficiency of friction for different belt material and the pulley33	3
Table 8: shows the total budget for machine construction	5

APPENDDICES

Appendix 1: cassava plantation in mayunge	41
Appendix 2: machine under construction	41
Appendix 3: cassava farmers during the survey	41
Appendix 4: shows the machine under fabrication	41
Appendix 5: the hopper dimensions	42
Appendix 6: the main frame and the cutting chamber	42
Appendix 7: the pulley dimensions	43
Appendix 9 :Testing the prototype	43
Appendix 8: Assessing the efficiency of the machine	43

CHAPTER ONE

1.1 BACKGROUND

Figure 1: cassava plant

Cassava (Manihot esculenta) is a very interesting root crop grown in many parts of the world and is considered as one of the most valuable staple food source for a huge number of people in tropical regions of the world, because of its efficient source of food energy, all year-round availability and tolerance of extreme environmental stresses making it suitable for farming [IITA, 1989]. The crop originated in South America, where its tubers have been used throughout the ages as a basic food; from there it spread to regions of the world. Currently, about half of the world's production of cassava is in Africa, and is cultivated in around 40 African countries with 45% of its contribution in the world. Throughout the forest and transition zones of Africa, cassava is either a primary staple or a secondary food staple in terms of calories consumed, Recently cassava has occupied a prominent place in National non – oil export commodity, especially exports in Sub –Saharan Africa that international demand is far above the supply (Fresco, 1993; Nweke *et al.*, 2002)

Uganda is ranked the sixth largest producer of cassava in Africa with 4.2 million metric tonnes having been produced, it is the second most important staple crop after bananas in the country (Kilimo Trust, 2012). The main cassava growing regions based on production volumes of 2008/2009 are; eastern region (37%), northern region (34%), western region (15%) and central region (14%). The national average yield of cassava is 12.5MT/ha with production being dominated by Smallholder having farm sizes of between 0.4 and 0.8 hectares.(Kilimo Trust, 2012).

The crop is grown for food and income and is traded as cassava flour (50%), dried cassava chips/pellets (45%) and raw cassava (5%) and also exports to the neighboring countries ,this has negatively affected local supply as it's mostly produced by rural small holder farmers , with the main source of planting materials from the farmers' fields, neighbors and sometimes

REFFERENCES.

- Alves, a. a. C. (2002). Cassava botany and physiology. *Cassava: Biology, Production and Utilization*, 67–89. https://doi.org/10.1079/9780851995243.0000
- Cossio, M. L. T., Giesen, L. F., Araya, G., Pérez-Cotapos, M. L. S., Vergara, R. L., Manca, M., ... Héritier, F. (2012). Cassava Production Guide. *Uma Ética Para Quantos?*, *XXXIII*(2), 81–87. https://doi.org/10.1007/s13398-014-0173-7.2
- Directorate Plant Production. (2010). Cassava-Production Guideline. *Agriculture, Forestry,* & *Fisheries*, 24. Retrieved from http://www.nda.agric.za/docs/Brochures/ProdGuideCassava.pdf
- Kilimo Trust. (2012). Development of Inclusive Markets in Agriculture and Trade (DIMAT). *Undp*, 1–48. Retrieved from http://www.undp.org/content/dam/uganda/docs/UNDPUg_ PovRed_Value Chain Analysis Report Honey 2013 Report.pdf
- Lungkapin, J., Salokhe, V. M., Kalsirisilp, R., & Nakashima, H. (n.d.). Development of a Stem Cutting Unit for a Cassava Planter, *IX*, 1–16.
- Otoo, J. (1996). Rapid multiplication of cassava. *International Institute of Tropical Agriculture (IITA), IITA* ..., 51. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Rapid+multiplication +of+cassava#0
- R.S. KHURMI and J.K.GUPTA. (2005). A textbook of, (I).
- Roothaert, R. L., & Magado, R. (2011). Revival of cassava production in Nakasongola District, Uganda. *International Journal of Agricultural Sustainability*, 9(1), 76–81. https://doi.org/10.3763/ijas.2010.0547
- Sciences, P., Issue, S., Xue, Z., Zhang, J., Zhang, Y. L., Li, C. B., & Chen, S. (2015). Test and analysis on the mechanical properties of cassava stalks, 25.