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ABSTRACT

Infectious diseases have become problematic throughout the world, threatening
individuals who come into contact with pathogens responsible for transmitting
diseases. Pneumoccocal pneumonia, a secondary bacterial infection follows an
influenza A infection, responsible for morbidity and mortality in children, elderly
and immuno—comprised groups. The aims of this Thesis are to; develop a mathe-
matical model for within—host co—infection of influenza A virus and pneumococcus,
model between—host pneumococcal pneumonia in order to determine the effect
of time delays due to latency and seeking medical care, and study the effect of
antibiotic resistance awareness and saturated treatment in the control of pneumo-
coccal pneumonia. Analysis of the stability of steady states of influenza A virus
and pneumococcal co—infection, pnemococcal pneumonia with time delays and
antibiotic resistance awareness is done. The graph theoretic method, combined
linear and quadratic Lyapunov functions, Goh—Voltera Lyapunov function are
used to get suitable Lyapunov functions for global stability of steady states. The
results show that the endemic equilibrium of pneumococcal pneumonia is locally
stable without delays and stable if the delays are under conditions. The results
suggest that as the respective delays exceed some critical value past the endemic
equilibrium, the system loses stability and yields Hopf—bifurcation. The results
of influenza A virus and pneumococcal co—-infection show that, there exist a
biologically important steady state where the two pathogens of unequal strength
co—exist and replace each other in the epithelial cell population when the pathogen
fitness for each infection exceeds unity. The impact of influenza A virus onto
pneumococcus and vice—versa yields a bifurcation state. The results show that,
the presence of antibiotic resistance awareness and treatment during the spread
of pneumococcal pneumonia drastically reduces the basic reproduction number

Ry to less than unity, hence the disease could be eradicated.

poel



CHAPTER 1

INTRODUCTION

1.1 Basic information about influenza A virus

Infectious diseases commonly known as communicable diseases, have always be-
sieged animals and humans. Pathogenic microorganisms, such as bacteria, viruses,
parasites or fungi spread diseases, directly or indirectly, from one person to an-
other. Examples of bacterial diseases include pneumococcal, Tuberculosis ; Viral
infections among others include influenza A virus and HIV/AIDS. Of the main
important pathogens affecting humans today are influenza A virus and pneumo-
coccus (Ackleh & Allen, 2003). Infectious diseases are significant and frequently

cause human illness that lead to mortality across the globe.

Influenza commonly known as 'flu’ is an infectious disease caused by a virus
that is categorized in four different types A, B, C' and D (IAV, IBV, ICV and
IDV), but only influenza A and B viruses cause clinically significant human
disease and seasonal epidemics (Ferguson et al., 2015). Influenza is one of the
most studied viral infections, interactions and co—infections for respiratory viruses
in general (Boianelli et al., 2015). It causes yearly chronic epidemic outbreaks,
and individuals become infected several times over their lifetime (Beauchemin &
Handel, 2011). They are distinguished by differences in two major virus surface
proteins; HA and NA (Kamal et al., 2017). There are 16 diverse types of HA and 9
diverse types of NA. Thus there are potentially 144 diverse subtypes of influenza A
viruses (Shi et al., 2010). With these types, virus A is epidemiologically essential
for humans because it can recombine its genes with those of strains circulating in

animal populations (birds, swine and horses).
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