

FACULTY OF ENGINEERING

DEPARTMENT OF MINING AND WATER RESOURCES ENGINEERING

FINAL YEAR PROJECT REPORTS

DESIGN AND FABRICATION OF A GOLD AMALGAMATION RETORT

CASE STUDY: TIIRA GOLD FIELD

BY

AYEBARE ARONE

REG NO: BU/UP/2016/290

Email: ayebareaaron08@gmail.com

SUPERVISOR: Mr. EDSON NUWAREEBA

A final year project report submitted to the Department of Mining and Water Resources

Engineering in partial fulfilment of the requirements for the award of a Bachelor of Science
in Mining Engineering.

ABSTRACT

Artisanal and small-scale gold mining sector is the single largest demand for mercury in the world. An estimated 1960 metric tons of mercury were discharged into the air, soil and water by ASGM globally in 2011(UNEP, 2013)

After thorough grinding of ore containing gold, mercury is added to the mixture to form a gold amalgam which is then heated to vaporize the mercury to obtain the gold. Mercury vapor can travel along distance for as far as 2500km in 72 hours (Glass et al. 1991), ultimately getting inhaled by the people around including women and children which is toxic to their health. (Risher, 2003).

This mercury ends up in the environment through open burning of the amalgam and spillage. The mercury released to the atmosphere has significant health risks to both the human beings and the environment including erethism, loss of memory, kidney failure, muscular tremors, madness and even death(Small-scale Handbook, 2002).

Therefore, this project was limited to the design and fabrication of a retort to reduce mercury vapor toxification and possibly recycle the mercury for re-use.

DECLARATION

I AYEBARE ARONE hereby declare to the best of my knowledge that this is my true and original
piece of work and has never been submitted to any university or institution of higher learning for
any academic award.

Signature:	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • •
Date: .			

This report has	been submitted to	the Faculty	of Engineering	for examination	with approval of
my supervisor					

Mr. EDSON NUWAREEBA
Signature:
Data

DEDICATION

I dedicate this report to my beloved parents Mr. and Ms. Nyebaze for their generous support which have indeed made me what I am today. Am very humbled and equally grateful, may the Almighty God reward them abundantly.

ACKNOWLEDGEMENT

First and foremost, I thank the Almighty God for the gift of life, wisdom and good health.

I appreciate my parents for the support they extended to me especially financially. May the Almighty God bless the work of their hands.

I am greatly indebted to Mr. Edson Nuwareeba for the incredible help, knowledge and encouragement he gave me throughout the accomplishment of this final project proposal report.

I congratulate and appreciate all my fellow classmates for the mutual support I received from them during the project proposal preparation.

LIST OF FIGURES s

Figure 1 location of Tiira gold field	16
Figure 2 shows a ball mill and heaps of ore	17
Figure 3 shows a zigzag sluice box	
Figure 4 shows a centrifuge	18
Figure 5 shows a shaking table	19
Figure 6 shows open burning of the amalgam and mercury vapor	20
Figure 7 shows a mine powering mercury in the bucket and then to trammel	
Figure 8 shows steps in concentrate amalgamation	22
Figure 9 shows a fume hood designs	
Figure 10 shows one of the existing design of retorts.	
Figure 11 shows a butane blow torch and a digital scale	
Figure 12 shows a retort setup	40
Figure 13 shows gold in the crucible after burning	
Figure 14 shows 2D drawings of a retort	41

LIST OF ACRONYMS

UNEP - United Nations Environment Programme

EPA - Environmental protection Agency

ASGM - Artisanal and Small-Scale Gold Miners

Hg-Mercury

LIST OF TABLES

1Material selection criteria	32
2 table of results	34
3 machine costing	36

TABLE OF CONTENTS

Contents	,
ABSTRACT	
DECLARATION	
APPROVAL	
DEDICATION	
ACKNOWLEDGEMENT	
LIST OF FIGURES	
LIST OF ACRONYMS	
CHAPTER ONE	
1.0 introduction	
1.1 BACKGROUND	. 12
1.2 PROBLEM STATEMENT	. 14
1.3 OBJECTIVES	. 14
1.4. SCOPE	. 14
1.5. JUSTIFICATION	. 15
CHAPTER 2: LITERATURE REVIEW	. 16
2.0. Introduction	. 16
2.1. THE STUDY AREA	. 16
2.2. MINING AND CONCENTRATION	. 17
2.2.1. Gold liberation (crushing and milling)	. 17
2.2.2. Improving concentration	. 17
2.3. OVER VIEW OF GOLD PROCESSING USING MERCURY	. 19
2.3.1 MERCURY	. 19
2.3.2 Mercury amalgamation process	. 20
2.4. MERCURY USE IN DETAILS.	. 21
2.4.1. whole ore amalgamation (WOA)	. 21
2.4.2. concentrate amalgamation.	. 21
2.5. HOW MERCURY CONTAMINATES THE ENVIRONMENT	. 22
2.5.1. chemical reaction of mercury with air.	. 23
2.6. IMPROVING PROCESSING AND REFINING	
2.7 RETORT	. 25

2.7.1 General Working principle of a retort	25
CHAPTER THREE: METHODOLOGY	26
3.0 Introduction	26
3.1 design considerations	26
3.2 conceptualization of the retort	26
3.2.1 conceptual model	26
3.2.2 functions of the machine components	27
3.2.3 Mechanism of operation of the gold amalgamation retort	28
CHAPTER 4: RESULTS AND DISCUSSION	30
4.1 preliminary and detailed design of the components	30
4.1.1 cooling chamber	30
4.1.2 Crucible	30
4.2 selectin of the material for the different components.	32
4.3 fabrication and assembly of the prototype	33
4.4 Testing the machine	33
4.5 Economic Analysis	35
4.5.1 machine costing.	36
CHAPTER FIVE	38
5.0 CONCLUSION AND RECOMMENDATION	38
5.1 CONCLUSION	38
5.2 RECOMMENDATION	38
REFERENCES	39
ADDENDIY	40