

FACULTY OF ENGINEERING

DEPARTMENT OF WATER RESOURCES AND MINING ENGINEERING

WATER RESOURCES ENGINEERING PROGRAMME

FINAL YEAR PROJECT REPORT

PROJECT TITLE

INVESTIGATING THE EFFECTIVENESS OF USING GLASS WASTE POWDER A PARTIAL FOR CEMENT IN CONCRETE PAVERS.

 \mathbf{BY}

KABONGE IVAN

BU/UP/2017/1495

drivankabonge@gmail.com

SUPERVISOR: MR. LUBAALE SOLOMON AZARIUS

A final year project report submitted to the Department of Water Resources and Mining Engineering as a partial fulfillment of the requirements for the award of a Bachelor of Science in Water Resources Engineering

DECLARATION

I KABONGE IVAN, hereby declare to the best of my knowledge, that this project proposal is an
outcome of my efforts and that it has not been presented to any institution of learning for an
academic award

Signature:	• • • • •		•••	•••	• • •	• • • •	• • •	••	• • •	•
Date:	/	./								

APPROVAL

This final research report has been submitted to the Faculty of Engineering for examination with approval of my supervisor.

MR. LUBAALE SOLOMON AZARIUS
Signature
Date/

ABSTRACT

There is a tremendous increase in the use of glass in Uganda due to its durability, bright surface and resistance to abrasion among others that has led to an increase in generation of glass waste which is non-biodegradable waste. Also, the increasing need for construction especially in developing countries has led to an increase in production of cement which is one of its raw materials. Cement production is associated with release of greenhouse gases. This has led to a need to research about glass as a pozzolan to replace cement in concrete pavers without altering their properties.

When glass waste is crushed down to micro size particles, it's expected to undergo pozzolanic reactions with cement hydrants. In this research, properties of both colored and non-colored glass were evaluated. Chemical analysis of glass and cement samples was determined using SEM technique and found out minor differences between colored and non-colored glasses. Compressive and water absorption tests were carried out on various percentages at which cement was replaced by glass waste powder in pavers. The compressive strength decreased with increasing glass waste powder yet water absorption increased in both colored and non-colored. A 20% replacement was of cement with glass waste powder was found convincing considering cost ad environment.

Table of Contents

DECLARA	TION	i
APPROVA	L	ii
ABSTRAC	Т	iii
1 CHAP	TER ONE	1
1.1 Ba	ckground	1
1.2 Pr	oblem statement	3
1.3 Ot	pjectives	3
1.3.1	Main objective	3
1.3.2	Specific objectives	3
1.4 Si	gnificance	3
1.5 Ju	stification	4
1.6 De	elimitation	4
2 Literat	ure review	5
2.1 Gl	ass	5
2.1.1	Types of glass and their uses	5
2.1.2	Impacts of glass and other non-biodegradable wastes	6
2.1.3	Different ways through which glass waste is recycled	7
2.2 Pa	ver blocks	7
2.2.1	Material used to make pavers.	7
2.2.2	Steps taken to make a paver	8
3 Materia	als and methods	11
3.1 Cł	naracterization of raw materials	11
3.1.1	Preparation glass waste into glass powder	11
3.1.2	Test the fineness of GWP.	12
3.1.3	Chemical analysis and microstructure of the glass powder	14
3.1.4	Sieve analysis of the aggregates.	15
3.2 De	etermining the effect of GWP on selected properties of concrete paves	16
3.2.1	Preparation of specimen for laboratory tests	16

3.2.2	2 Laboratory test	21
3.3	Determine optimum mix design.	25
3.4	Cost effectiveness of the project	25
4 RES	SULTS AND DISCUSION	26
4.1.	1 Characterization of materials	26
4.1.2	2 Chemical analysis	27
4.1.	3 Sieve analysis of the aggregates	28
4.2	Determining the effect of GWP on selected properties of concrete paves	29
4.2.	1 Preparation of specimen	29
4.2.2	2 Laboratory tests	30
4.3	Optimum percentage of cement to be replaced by GWP	32
4.4	Cost effectiveness of the project.	33
5 CHA	APTER FIVE	34
5.1	Challenges	34
5.2	Conclusions	34
5.3	Recommendations.	34
6 App	endix	35

List of figures

Figure 1:colored glass waste	12
Figure 2:sieving GWP	13
Figure 3:pavers in a water tank	23
Figure 4:colored GWP	26
Figure 5:chemical analysis of non-colored GWP using SEM	27
Figure 6:Chemical analysis of colored GWP	27
Figure 7:PARTICLE SIZE DISTRIBUTION FOR FINE AGGREGATES	28
Figure 8:particle size distribution for stone dust	28
Figure 9:effect of non-colored GWP on water absorption	30
Figure 10:effect of colored GWP on water absorption	30
Figure 11:effect of non-colored GWP on compressive strength	31
Figure 12:effect of colored GWP on compressive strength	32
Figure 13:compressive strength of non-colored GWP	35
Figure 14 compresive strength of colored GWP and fineness test.	35
Figure 15:water absorption and sieve analysis results	36
Figure 16:crusher with loads	36
Figure 17:crusher with rollers	37
Figure 18:laid pavers before put in a water basin	37
Figure 19:after compacting a paver in a mold	38

List of tables

Table 1:tabulated results of the fineness test	
Table 2:% composition of elements in non-colored GWP	14
Table 3:% Composition of elements in colored GWP	14
Table 4:sieve analysis of fine aggregates	15
Table 5:sieve analysis of stone dust	
Table 6:loading of mortar into a mold	
Table 7:laying of pavers after compacting	
Table 8: water absorption results	
Table 9: compressive strength results	
Table 10:cost effective analysis	
Table 11:proportioning of ingredients	
Table 12:effect of GWP on compressive strength	

LIST OF ACRONYMS

GWP – Glass Waste Powder

IS – Indian Standard

BS – British Standard

ACI – American Concrete Institute

 $EDTA-Ethylene diaminete traacetic\ Acid$

OPC - Ordinary Portland Cement