

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

DIPLOMA IN COMPUTER ENGINEERING

FINAL YEAR PROJECT REPORT

DESIGN OF AN AUTOMATIC TEMPERATURE MONITOR AND FACE MASK DETECTION SYSTEM

 \mathbf{BY}

KABANDA SIMON: BU/UP/2019/1350

kabandasimon23@gmail.com

KATONGOLE JONATHAN: BU/UP/2019/1352

jonathaninnocentkatongoler@gmail.com

MASESE BOSCO ALLAN: BU/UP/2019/1347

maseseallan86@gmail.com

SURPERVISOR: Mr. ALUNYU ANDREW

DECLARATION

We hereby declare that this project is based on our original research work except for work where citations and quotations have been duly acknowledged. It has not been presented with any of its contents at any institute of higher learning for an academic reward.

Kabanda Simon
BU/UP/2019/1350
Signature
Date
Masese Bosco Allan
BU/UP/2019/1347
Signature
Date
Katongole Jonathan
BU/UP/2019/1352
Signature
Date

| Page

APPROVAL

This is to approve that this proposal has been fully and consistently worked on and submitte to the department of computer engineering under the supervision of the undersigned supervisor;		
Mr. Alunyu Andrew		
Date:		

DEDICATION

We dedicate this report to our parents and to all our friends for always being there for us especially in this journey of academics.

ACKNOWLEDGEMENT

First and foremost, we extend our sincere and inexplicable gratitude to the Almighty God who enabled us to strive through all the challenges up to this time.

We would also like to acknowledge and appreciate all the lecturers we approached for any kind of assistance in the development of this project and writing of this proposal report but most outstanding Mr. Alunyu Andrew our supervisor and Mr. Lusiba Badhiru. We thank you all for the guidance and time rendered to us.

Finally, to our classmates who sacrificed their time and knowledge and engaged in discussions as regards the successful development of this project, thank you for the team work and may God bless you.

ABSTRACT

The coronavirus COVID-19 pandemic is continuously spreading until now everywhere on the earth, and causing a severe health crisis. So the helpful and safe-keeping method is wearing a face mask in all areas where people are gathered, according to the World Health Organization (WHO). Along with the face mask, body temperature and sanitization also plays a vital role in being safer. Thus, monitoring the individuals that are wearing the mask or not is more significant. In this case, we suggested a system that uses color sensor to identify specified color of a mask an individual is wearing. Then the automatic temperature checking is done. Finally, the system gives an arlerm in case of the absence of the required mask or abnormal temperature. Our approach would be beneficial in reducing time wasted on manual labour, the spread of this infectious disease and will encourage people to use face masks and monitoring the temperature can keep the workplace safe.

LIST OF ACRONYMS

ID	Identification
IT	Information and Technology
LAN PCB	Local Area Network Printed Circuit Board
Wi-Fi IC	Wireless Fidelity Integrated Circuit

Table 1 showing list of acronyms

LIST OF TABLES

9	
Table 5: showing mercury thermometer vs Digital thermometer vs Infrared Thermometer	r
Table 2showing protective covering of the faceTable 3	5
Table 1 showing list of acronyms	vi

LIST OF FIGURES

figure 1 showing conceptional diagram	16
Figure 2: System Physical Designfigure	17
figure 3 showing system physical design	22
figure 4 showing how the system works	22

TABLE OF CONTENTS

Contents

DECLARATIONi
APPROVALii
DEDICATIONiv
ACKNOWLEDGEMENTv
ABSTRACTv
LIST OF ACRONYMSvi
Contentsix
CHAPTER ONE:1
1.0 INTRODUCTION1
CHAPTER TWO: 5
LITERATURE REVIEW5
2.0 INTRODUCTION 5
2.1 KEY TERMS5
2.1.1 Face mask 5
2.2 TECHNOLOGY TO BE USED
CHAPTER THREE:

METHODOLOGY

3.0 INTRODUCTION
3.1 DATA COLLECTION
3.1.1 Literature Review
3.1.2 Observation
3.1.3 Interviews
3.1.4 Consultations
3.3 Requirement Analysis
3.4 System Design
3.5 System Design Considerations

3.6 Tools for the system	
3.6.1 Hardware tools	11
3.6.2 Software tools	
3.7 System Implementation	
3.5 SYSTEM TESTING	
CHAPTER FOUR: SYSTEM ANALYSIS AND DES	SIGN
4.0 Introduction	
4.1 Requirements Analysis	
4.2 System Design	
4.2.0 System Circuit diagram	
4.2.1 System block diagram	
CHAPTER FIVE: SYSTEM IMPLEMENTATION18	AND TESTING
5.0 INTRODUCTION	
5.1 DEVELOPMENT PLATFORMS	
5.2 SOFTWARE DESIGN	
5.2 CODE DESIGN	

	5.3 SYSTEM TESTING AND EVALUATION
	CHAPTER SIX: DISCUSSION AND RECOMMENDATIONS20
	6.0 INTRODUCTION
	6.1 SUMMARY OF WORK DONE
	6.2 CRITICAL ANALYSIS /APPRAISAL OF THE WORK
	6.3 RECOMMENDATIONS
	6.3 CONCLUSION
4	1.2.1 REFERENCES
	APPENDICES22
	APPENDIX 1: SYSTEM PHYSICALDESIGN
	APPENDIX 2: SYSTEM HARDWARE CODE