

FACULTY OF ENGINEERING

DEPARTMENT OF CHEMICAL AND PROCESS

ENGINEERING

FINAL YEAR PROJECT REPORT

DESIGN AND CONSTRUCTION OF A MOTORIZED MAIZE DEGERMER.

BY

OWOKWESIGA EMMANUEL

BU/UG/2015/16

AUSITEMA UNIVERSIT

EMAIL:emmadraxlergmail.com.

TEL:0780893586/0757032308.

SUPERVISOR: Mrs.KABASA SALLY MARRY.

final year project report submitted in partial fulfilment of the requirements for the award of the BSc. In Agro- processing engineering of Busitema University.

ABSTRACT

Cereal crops grown in Uganda include; maize, finger millet, sorghum, rice, pearl millet and wheat in that order of importance. Other than wheat, these crops provide staple food for well over 50% of the population (UBOS, 2010). According to report made by Bill & Melinda Gates Foundation (2014), Uganda was ranked as the 8th largest producer of maize in Africa and 3rd in East Africa. *Maize* is grown in most parts of Uganda but most intensely in eastern (Kapchorwa, Mbale, Kamuli, Jinja, Iganga), central (Masaka, Mubende) and western (Masindi, Kamwenge, Kyenjojo, Kasese, Kabarole) covering a total area of 1,014,260ha across the whole Uganda with 189,135ha in central, 388,762ha in Eastern, 247,780ha in Northern, 188,583 in western (UBOS, 2010)

maize is commonly consumed as either maize meal or maize flour but the most popular one is the maize flour. During the process of maize milling into maize flour the hull and germ are removed as maize bran leaving endosperm which is ground into maize flour. According to Heuze *et al.*(2015) Maize germ contributes about 11% of the kernel weight, contains 45-50% oil and about 85% of the oil kernel. The germ if wholly separated from endosperm and the hull, it can be further processed to produce high value products such as oil, oil meal, livestock feeds and fortification program. Therefore, there is a need to design and construct a motorized de-germing machine that will separate the germ wholly from the hull and endosperm so that it can be used for further processing.

Different components of the machine were designed basing on the physical, mechanical and chemical properties of the maize, the components include; the feed hopper, crushing rollers, shaft and abrasive disks, main frame, driving mechanism and analyzing forces acting on the components to prevent failure. The machine uses a total maximum power of 7.5HP, after fabrication, the performance and economic analysis of the machine were performed in terms of extraction efficiency of 54.5%. Machine's total cost; Ugx.2.08M, and its Net present value is 701240830.2, since its greater than 0, the project is viable, Owing to the performance and economic analysis of the machine, it achieves all its design purposes hence it is recommended for commercialization and adoption by the target groups.

DECLARATION

I OWOKWESIGA EMMANUEL declare to the best of my knowledge that this project report is as a result of my research and effort and it has never been presented or submitted to any institution or university for any academic award.

SIGNATURE

BUSITEMA UNIVERSITY LIBRARY CLASS No.

APPROVAL

This project report has been submitted to the department of Chemical and process Engineering for examination with approval from the following supervisor:

Mrs. KABASA SALLY MARY.

SIGNATURE	•••	•••		•••	•	 • •	 •	•	•••	•	•	•	• •		•	•	•	•	•	•	• •	•
DATE			•	• •	•••	 •••	 •			•	•			•	•	•	•	•	•		•••	23

BUSITEMA UNIVI	Reime
CLASS No.:	LIBRARY
ACCESS NO.:	

OWOKWESIGA EMMANUEL

55.

	2.8	.2	Objectives of Degerming	17
	2.9	Me	chanical process of Degerming/De-hulling	17
	2.10	Ove	r View of Existing Degermers	18
	2.1	0.1	Beall degermer	
	2.1	0.2	Entoleter	19
	2.1	0.3	Disc Degermer	20
	2.1	0.4	Cone Huller	20
	2.1	0.5	Granulator	21
	2.1	0.6	Roller-mill	21
	2.11	Lin	nitations in the current existing hullers/degermers	22
3	CL	IAPT	ER THREE: MATERIAL AND METHODS	23
	3.1	Des	sign Parameters and Considerations	23
	3.2	Cor	struction and mode of operation of the machine	23
	3.2	.1	Construction	23
	3.3	Cor	ceptual Design of the machine	24
	3.4	Mo	de of operation of the Machine	25
	3.4	.1	Major Unit operation carried by the Machine	25
	3.5	Des	sign of the Prototype components	26
	3.5	.1	Hopper	26
	3.5	.2	Hulling Chamber:	26
	3.5	.3	Power requirement of the machine	28
	3.5	.4	Design of the Driving System	28
	3.5	.5	The Main Frame:	
	3.5	6.6	The Shaft Design	
	3.5	.7	Design of the rollers	32
	3.5	.8	Selection of the sieves	33
	3.5	.9	Selection of Bearing	33
	3.6	Fal	rication of the Maize Degermer components	
	3.6	5.1	Material Selection Criteria	33
	3.6	5.2	Fabrication Methods and Processes Used in the Construction of the Maize	
	de	germ		
	3.6	».3 —	Assembly of the Various Maize Degermer Components	35
	3.7	Tes	sting the Performance of the Proposed Prototype	
	owo	KWE	SIGA EMMANUEL	VÏ

7

-

÷

3.8	The	Economic Evaluation of the Prototype	
3.8	3.1	Simple Payback	
3.4	1.2 Si	mple Rate of return	
3.8	8.2	Present value (PV)/present worth analysis	
4.1 T	DESIC	IN CALCULATIONS FOR THE MACHINE COMPONENTS	
4.	1.1 H	opper	

List of tables

Table 2-1: Showing common varieties of maize(Source:(Tasai, 2016))	5
Table 2-3: Showing Influence of Milling on the Vitamin and Mineral Content of Maize	8
Table 2-4: Showing Chemical composition of maize	8
Table 2-5: Products of wet milling	.9
Table 2-6: Products of dry milling	11
Table 7: Showing Operations, Tools and Equipments Used In the Construction of the	
Prototype	34

List of figures

3.

Figure 2-1:Showing maize production trend, Source: USDA(United State Departme	ent of
Agriculture)	4
Figure 2-2: Roasted Maize	6
Figure 2-3: Showing Components of the corn kernel	7
Figure 2-4: Dry yellow maize	11
Figure 2-5: Showing white maize after harvest	11
Figure 2-6: Beall degermer design	19
Figure 2-7:Showing Impact degermer	20
Figure 2-8: Showing Disc maize huller	20
Figure 2-9: Showing cone maize huller	21
Figure 2-10: Showing Engelberg maize Huller	
Figure 2-11:Showing Roller mill degermer	22
Figure 12:Sequence of Major unit operations	25
Figure 13: Hopper	26
Figure 14: shows pulley-belt arrangement.	28
Figure 15: illustrates tension in the belts	29
Figure 16:shows the designed extraction rollers for the machine	
Figure 17: shows rollers-Kernel arrangement	32

1 CHAPTER ONE: INTRODUCTION

1.1 Background

Cereal crops grown in Uganda include; maize, finger millet, sorghum, rice, pearl millet and wheat in that order of importance. Other than wheat, these crops provide staple food for well over 50% of the population (UBOS, 2010). According to report made by Bill & Melinda Gates Foundation (2014), Uganda was ranked as the 8th largest producer of maize in Africa and 3rd in East Africa. Maize is grown in most parts of Uganda but most intensely in eastern (Kapchorwa, Mbale, Kamuli, Jinja, Iganga), central (Masaka, Mubende) and western (Masindi, Kamwenge, Kyenjojo, Kasese, Kabarole) covering a total area of 1,014,260ha across the whole Uganda with 189,135ha in central, 388,762ha in Eastern, 247,780ha in Northern, 188,583 in western (UBOS, 2010). Over 90% of Uganda's maize is produced by smallholder farmers (SHFs), of which about 60% of the annual maize output is consumed on the farm, 22% is exported mainly to Kenya, S. Sudan, Rwanda, Burundi and Congo. Inefficient storage and drying practices lead to 15%postharvest losses and low quality. Different varieties of maize grown in Uganda include: White star, Kawanda Comp A., Longe 1, Longe 4 (LP 16), Myezi Mitatu(MM3), Longe 5 D, UH 5402 (Tasai, 2016). Maize can be consumed on cobs, which are either cooked or roasted. Maize can also be dried and then milled into maize flour which can be used to prepare a local paste called posho, demand for which is on the increase. Maize flour is also used in making porridge for breakfast in many homes in urban areas while the maize itself is used in the manufacture of feeds for livestock. Maize is also a good source of starch and oil (NARO, 2015). Globally, maize is a staple crop, and many people rely on it as a primary source of nutrition and its deficiency in the diet can lead to malnutritional diseases like marasmus. According to (Kasooha, 2013) 60% of children below five years die annually in Uganda as a result of malnutrition, he further indicated that 45% of children in Karamoja are affected by malnutrition while in the western region it stands at 44%.

There are two distinct techniques that are used to process corn: wet milling and dry milling.Corn wet-milling is a process where components of corn kernels are extracted to produce a highly purified product. Most of the products from this process are valuable and mainly required by the food industry. Dry Milling processors produce starch for ethanol and other products, while valuable by-products for use in animal feeds. From a processing perspective, the maize kernel is

REFERENCE

')

Association, C. R., 2013.. Corn Starch, . Washington, D.C: Corn Refiners Association.

B.C. Gupta, R. K. &., 2009. *Theory of Machines*. 14th edition, ed. New Dheli: Eurasia publishing house pvt ltd..

Bauernfeind, J. a. E. D., 1991. Cereal Grain products. In: J. a. P. L. (. Bauernfeind, ed. In Nutrient Addition to Foods.. s.l.:Food and Nutrition Press.

Eckhoff, S., 2010. Correct terminology usage in corn processing. *Cereal Foods World*, p. 55: 144-1478.

FAO, 2016. Production of major cereal crops, s.l.: s.n.

Foundation, B. &. M. G., 2014. Multi crop value chain Phase II : Maize Uganda, s.l.: s.n.

Heuze V, T. G. L. F., 2015. Maize germ meal and maize germ, s.l.: Feedipedia.

Kasooha, I., 2013. Karamoja, Western Uganda top in malnutrition, kampala: New Vision.

NARO, 2015. An overview of maize in Uganda: Post harvest program, s.l.: s.n.

Rachey, M. B. A. K. a. S. H. B., 2000. "Design and development and performance evaluation of a hand operated Maize Sheller", s.l.: s.n.

Tasai, 2016. NATIONAL CROP VARIETY LIST FOR UGANDA, s.l.: s.n.

UBOS, (. B. o. s., 2010. National Household Survey 2009/10., s.l.: s.n.

UBOS, 2010. Summary Report on Uganda Census of Agriculture 2008/09, Kampala: UBOS.

USAID, 2014. Fortification Basics, s.l.: s.n.

USDA, (. s. D. o. A., 2018. Uganda corn production by year, s.l.: s.n.