

FACULTY OF ENGINEERING DEPARTMENT OF AGRICULTURAL MECHANIZATION AND IRRIGATION ENGINEERING

DESIGN AND CONSTRUCTION OF A MANUALLY OPERATED

SIMSIM THRESHER

BY

OKAO JIMMY

BU/UP/2010/267

Email: engjimmyokao@gmail.com

Phone: +256777897044, +256752088704

Main Supervisor: ENG. ODOGOLA WILFRED RICHARD

Co-Supervisor: MR. ODONG SAMUEL ATOCHON

Final Year Project report presented in Partial Fulfillment of the requirements for the Award of Degree in Bachelor of Agricultural Mechanization and Irrigation Engineering of Busitema University

MAY 2015

ABSRRACT

Simsim is a small white nutritious oil seed with ready markets. It is produced by smallholder farmers. With the recent surge in global demand, simsim farmers in Uganda have turned increasingly to growing simsim as a cash crop. The major characteristics considered by simsim buyers and sellers are the seed color aroma and cleanliness. Besides problems of volume, small-scale production presents challenges of quality control, including adulteration with soil during threshing, which makes it difficult to meet the stringent standards required to access premium markets.

Threshing manually by the rudimental traditional method of beating on the ground is tedious, time consuming, labor intensive and results in simsim adulteration with soil. The adulteration with the soil leads to contamination by microorganism in the soils and affects the color and cleanliness of the seeds. The main objective of this project is to design and construct a manually operated simsim thresher, and test the capacity and efficiency of the proto-type. This project primarily focused on small holders producers of simsim and was limited to design, construction and on-station testing of the simsim thresher.

The following considerations was be made in material selection in order to optimize the fabrication of the thresher; quality (mechanical strength), suitability to working condition, availability, manufacturability and cost. Other parameters like weight and size of seeds, length of sheaves and moisture content of the simsim was also be considered.

The fully constructed prototype was be tested for output and evaluated economically and the 77.2kg of simsim was threshed per hour.

DECLARATION

I Okao Jimmy do hereby declare that this research project report is my own original work and that it has not been published and/or submitted for any academic award to any higher institution of learning. All the work contained in this report is as a result of my research except where cited.

ON .

OKAO JIMMY

Date: 4/June/2015

CLASS NO.: PCI 0609

APPROVAL

This project report has been submitted for examination with approval from the following supervisors:

Eng. Odogola Wilfred Richard

Main supervisor

Date:

Mr. Odong Samuel Atochon

Co-supervisor

Date:

DEDICATION

I dedicate this project report to my beloved parents Mr. and Mrs. John Alfred Ogal for the selfless care and support provided to me ever since childhood. I thank you for the spirit of hard work, courage and determination you have instilled in me throughout my school days till today.

ACKNOWLEDGEMENT

I am indebted to my dear brothers, sisters, relatives, classmates and friends to whom i extend my sincere appreciation for their guidance and support.

I extend my gratitude to all my Lecturers at the Faculty of Engineering, Agricultural Mechanization and Irrigation Engineering Department who have equipped me with academic knowledge that has guided me to succeed in my studies for the four academic years.

My thanks go to my supervisors Eng. Odogola Richard Wilfred and Mr. Odong Samuel Atochon whose directions and guidance enabled me to successfully complete the project. Additionally, special regards goes to my fellow students for the time offered during consultation.

I thank the almighty God for his grace, mercy, wisdom and protection.

Contents

ABSRRACT	
DECLARATION	II
APPROVAL	iii
DEDICATION	iv
ACKNOWLEDGEMENT	ν
ÄCCRONYMS	vjii
CHAPTER I: INTRODUCTION	1
1.1, Background	1
1.2 Problem Statement	4
1.3 Justification	4
1.4 Purpose of the Study	5
1.5 Objectives of the Study	5
1.5.1 Main objective	5
1.5.2 Specific objectives	5
1.6 Scope and limitation of the Study	5
CHAPTER II: LITERATURE REVIEW	6
2.1 INTRODUCTION	6
2.2 Varieties of simsim grown in Uganda	8
2.3 Uses and content of simsim	8
2.4. Gender involvement	9
2.5. Methods of threshing	9
2.5.1 Traditional method	9
2.5.2 Combine Harvester	11
2.5.3 Threshing machine BHD-1300	12
CHAPTER III: METHODOLOGY	14
3.1 Design Considerations and Mode of Operation	14
3.2 Conceptual model of a simsim thresher	14
3.3 Material selection	14
3.4 Design Parameters and Considerations	15
3.5 Mode of Operation of the Design	16
3.6 construction	16
3.7 Thresher components.	17
3.7.1 Beaters	17
3.7.2 Determination of the weight of the assembly of beaters attached on the shaft	17
3.7.3 Determination of the Angle of Repose	18
3.7.4 Determination of the height S of the outlet plates	

	3.7.5 Determination of the weight of the empty outlet	19
	3.7.6 Determination of the maximum bending moment acting on the shaft	19
	3.7.7 Determining of the maximum deflection	19
	3.7.8 Determination of the force required for detaching simsim from the capsules	20
	3.7.9 Determination of the power required to thresh the simsim	20
	3,7.10 Determination of torque required	21
	3.7.11 Determination of the shaft diameter	21
	3.8 Analysis of results	21
:	3.9 Summary of fabrication	2,2
СН	APTER IV: RESULTS AND DISCUSSION	23
	4.1 Design of machine components	23
4.2	Test results	26
	4.3 Result analysis	26
	4.4 Machine costing	28
	4.5 The payback period	28
CH	APTER V: RECOMMENDATIONS AND CONCLUSIONS	30
	5.1 CONCLUSIONS	30
!	5.2 RECOMMENDATIONS	30
RE	FERENCES	31
ΔP	PENDICES	32

ACCRONYMS

ADA

Austrian Development Agency

BMF

Federal Ministry of Finance

FAO

Food and Agriculture Organization

GLOBALGAP

Global Good Agricultural Practices

ICRISAT

International Crops Research Institute for the Semi-Arid Tropics

IPGRI

International Plant and Genetic Resources Institute

ITC

International Trade Centre

MAAIF

Ministry of Agriculture, Animal Industry and Fisheries

NARO

National Agricultural Research Organization

NaSAARI

National Semi Arid Resources Research Institute

NGO

Non-Governmental Organization

NOGAMU

National Organic Agricultural Movement of Uganda

SWOT

Strengths, Weaknesses, Opportunities, Threats

UBOS

Uganda Bureau of Statistics

UOSPA

Uganda Oil Seeds Processors Association

CHAPTER I: INTRODUCTION

1.1. Background

Simsim has been cultivated since antiquity. It is grown mainly in the tropics; simsim production is dominated by smallholders in developing countries. Simsim production in Uganda between 2004 and 2008 averaged 158,600 tonnes/year (FAO, 2010). Uganda is the world's fifth biggest producer of simsim after India (666,020), China (627,333), Myanmar (511,800) and Sudan (333,600) tonnes/year (FAO, 2010). Until 2002, the production of simsim in Uganda stagnated because of insecurity in the Northern region which is the main Centre of production. Recently, with peace and improved security in the main producing region, simsim production has grown both in volume and in value. Between 2002 and 2008 simsim production in Uganda grew by 66 % (from 106,000 to 173,000 tonnes) while the area planted to simsim increased by 38 % (from 211,000 to 286,000 Ha).

Valued for its small white nutritious seeds, simsim (Sesamum indicum L.) is locally known as simsim in East Africa. The crop is grown in Northern and some parts of Eastern and Western Uganda (Ashri, 2007). It is a high value crop with ready domestic, regional and international markets. Simsim is produced by smallholder farmers who grow it both for home consumption and as a cash crop. With the recent surge in global demand for simsim and simsim oil, farmers in Uganda have turned increasingly to growing simsim as a cash crop, earning it the nickname 'white gold' in Northern Uganda.

Growing sample households sells 78 % of the total volume of simsim produced, Farmers in Lango region sell the highest proportion (88 %) of harvest, followed by Teso (79 %) and Acholi (62 %). Thus, in all three regions simsim is grown primarily as a cash crop. The high proportion of sales suggests that simsim has the potential to raise farm income.

REFERENCES

Ashri, A. (2007). Simsim (sesamum indicum L.) in: Genetic Resources, Chromosome Engineering and Crop Improvement, In: Singh R.J. (Ed.). Oilseed crops. Vol. 4 (CRC Press: BOC Raton, FL), pp. 231-289.

FAO (1994): Testing and evaluation of Agricultural Machinery and Equipment. Principles and practices. Food and Agricultural Organization (FAO) Agric. Services Bulletin No. 110. FAO.2000.the state of food insecurity in the world.

FAO 2001. An overview of the agronomic constraints to simsim production in Uganda.

Ssekabembe 2012. Some aspects of simsim production in Northern Uganda

Uganda Bureau of International Statistics (UBOS) (2008). Statistical Abstract. (Kampala: Uganda Bureau of Statistics).

Muricho G. (2010). Baseline Survey of Simsim Production in North and Eastern Uganda: A Report on the Qualitative Survey Undertaken in the Project Sites. Unpublished report. ICRISAT

Munyua. 2013. A value chain analysis of seasame marketing in northern Uganda.

Shigley, J. E (1986). Mechanical Engineering Design S. I (metric) ed .McGraw - Hill , New York , US A