

FACULTY OF ENGINEERING

DEPARTMENT OF WATER RESOURCES AND MINING ENGINEERING

FINAL YEAR PROJECT REPORT

INVESTIGATING POTENTIAL OF STORM WATER MANAGEMENT THROUGH ROOFTOP WATER HARVESTING TECHNOLOGY

BY

NAME: ATIM CHRISTINE ROSE

REG.NO BU/UP/2014/563

Email: tinalisha44@gmail.com

Tel:+256786490061

SUPERVISORS

MAIN SUPERVISOR: MR. OKETCHO YORONIMO

CO-SUPERVISOR: MADAM NAKABUYE HOPE NJUKI

Report submitted in partial fulfillment of the requirements for the award of a Bachelor of Science in Water Resources Engineering Busitema University

MAY 2018

ABSTRACT

The hydrological cycle describes water as a renewable and recyclable resource. It is a key determinant in the existence of life and agricultural activity. It is seemingly abundant on earth but in case of any scarcity, it is thought of as a precious resource. Being an integral of urban life, it is used in homes for several purposes such as drinking, cooking and even watering gardens. Away from homes, it is used for fishing, navigation and recreation. Storm water runoff is a part of this cycle. It is described as that portion of precipitation that is not lost to interception, surface detention, evaporation and infiltration.

Urban drainage systems of municipalities in Uganda are overwhelmed with runoff, most of which are generated from rooftops and left uncaptured, largely due to the presence of impervious surfaces resulting from increasing urbanization, surfaces that used to absorb water; vegetation and topsoil, are now covered with building tops, sidewalks, parking lots, paved and cemented roads causing water to run off them. Unfortunately, the existing drainage systems are not even in functioning conditions to hold the large runoff volumes. Most of this runoff ends up in stream channels and other receiving surface water bodies thus immensely affecting water quality. This study was aimed at investigating potential of storm water management through rooftop water harvesting technology in Western division, Tororo municipality.

This was achieved through hydrological modelling in HEC-HMS, the Rational method for roof areal runoff quantification and land use monitoring for modelling the effects of increasing urbanization on the watershed runoff potential rates. The output of the study includes generated hydrographs, peak discharge volumes and the water harvesting potential of the area. The results of the study from the hydrological model gives a peak discharge of 14m³/s whereas that captured by roofs is 12.58m³/s indicating an 89.8% decrease in the amount that would otherwise runoff. The area also has an annual water harvesting potential of 2,022,178.568m³. This could be used to supplement the existing sources of water supply and it is in itself a cheap technology if adopted, reducing on the cost of water bills as well as mitigating the occurrences of floods in the region. With increasing urbanization levels, the peak runoff discharges are also bound to increase because of increase in the percentage of impervious surfaces, thus increase even in the water harvesting potential.

Author's Declaration

I **ATIM CHRISTINE ROSE** hereby declare to the best of my knowledge that this is my true and original piece of work and has never been submitted to any university or institution of higher learning by anyone for an academic award.

Signature.....

Approval

This project proposal has been admitted to the faculty of Engineering with the approval of my supervisors;

Main Supervisor: Mr. Oketcho Yoronimo

Signature.....

Date.....

Co-Supervisor: Ms. Nakabuye Hope Njuki

Signature.....

Date.....

Dedication

I dedicate this report to my parents and guardians who have tirelessly supported and guided me to make me what I am today.

Acknowledgement

First and foremost, I would like to thank the Almighty God for His protection and guidance in my life.

I am also highly indebted to the entire staff in the department of Mining and Water resources engineering for imparting knowledge and skill regarding the above field to me. In a special way, I greatly appreciate supervisors, Ms. Nakabuye Hope Njuki and Mr. Oketcho Yoronimo for all the guidance, advice and encouragement as regards this research. May God richly bless you. I am grateful too to the discussion group members I have worked with right from my first year; Kadecember Agnes, Kalule Jessy, Adikin Helen, Ayebare Lucky, Nuwemukama Immaculate, Niringiye Ernest, Mugondi Chrisostom, Nuwomujuni Anatori, Butita Simon Peter and Tindimwebwa Doreen.

List of figures

Figure 1: Flow chart of GIS operations for extracting watershed information for	rom DEM 20
Figure 2: Methodology flow chart for HEC-HMS	
Figure 3: Google earth view of the settlements within Western division, Tororo	
municipality	
Figure 4: Land use map of Western division Tororo	
Figure 5: Curve Number grid map of Western division	
Figure 6: The delineated catchment	
Figure 7: HEC-HMS results for the watershed	
Figure 8: Hydrograph and Hyetograph for the 2013 calibration	
Figure 9: Hydrograph showing calibration of the watershed in Western division	n for 2013 31
Figure 11: Intensity Duration Curves for various return periods	
Figure 12: Runoff depth difference on the watershed between the Reference ca	se (40%
urbanization) and at 60% urbanization level	
Figure 13: Runoff relationship between the reference case scenario and urbani	zation at the
watershed outlet	

LIST OF TABLES

Table 1: Runoff coefficients	. 9
Table 2: Various datasets and their sources	18
Table 3: Summary of scenarios created for analysis	25
Table 4: HEC-HMS results for the sub-basins and outlets	30
Table 5 : Rainfall intensities for various durations and return periods	32
Table 6: Google earth captured measurements of a sample roof	33
Table 7: Elevations of the roof inlet and outlet	33
Table 8: Land uses, areas and corresponding runoff coefficients	34
Table 9: Runoff depths at 40% and 60% urbanization levels Error! Bookmark not define	ed.
Table 10: T- test results indicating the level of significance of the impact created from	
increase from reference (40%) urbanization level to 60% level on the watershed	36
Table 11: Runoff depths at 60% and 80 % urbanization levels	37
Table 12: T-test results indicating the level of significance of increasing urbanization	
impact on the watershed from 60% to 80% level	38

ACRONYMS

HEC-HMS	Hydrologic Engineering Center's Hydrological Modelling Systems
FAO	Food and Agricultural Organisation
Df	Degree of freedom
RTWH	Rooftop Water Harvesting
DWRM	Directorate of Water Resources Management
MWE	Ministry of Water and Environment
GIS	Geographical Information System
IDF	Intensity Duration Frequency
CNGRID	Curve Number Grid
UBOS	Uganda Bureau of Statistics
SCS	Soil Conservation Service
HSG	Hydrologic Soil Group
DEM	Digital Elevation Model
NWSC	National Water and Sewerage Corporation
UNMA	Uganda National Meteorological Authority

Table of contents

1	CH	APT	ER ONE: INTRODUCTION	1
	1.1	Bac	kground of study	1
	1.2	Pro	blem statement	3
	1.3	Pur	pose of the study	3
	1.4	Obj	ectives of the study	3
	1.4.	1	Main objective	3
	1.4.	2	Specific objectives	3
	1.5	Sco	pe of the study	3
	1.6	Just	tification	3
2	CH	APT	ER TWO: LITERATURE REVIEW	5
	2.1	Cor	ncepts of runoff	5
	2.1.	1	Types of runoff	5
	2.1.	2	Factors affecting runoff	6
	2.1.	3	Urban storm water runoff	6
	2.1.	4	Estimation of peak runoff	6
	2.2	Rat	ional method of runoff quantification	7
	2.2.	1	Runoff coefficient	8
2.2.2		2	Storm intensity	9
	2.2.	3	Time of Concentration	10
	2.3	Roc	oftop Water Harvesting	11
	2.3.	1	Benefits of rooftop water harvesting	11
	2.3.	2	Components of a roof top water harvesting system	12
	2.4	Cat	chment delineation using ArcGIS	12
	2.5	Hyc	drologic Engineering Center's Hydrologic Modelling System (HEC-HMS)	13
	2.5.	1	HEC-GeoHMS Processing	13
	2.5.	2	Hydrological modeling	14
	2.6	Goo	ogle earth imaging for area calculation	15
	2.7	Lan	d use monitoring	15
	2.7.	1	Monitoring the impact of urbanization on potential runoff rates within a waters 15	hed
	2.8	The	e T-Test for statistical significance	16

3	3 CHAPTER THREE: METHODOLOGY		
	3.1 Project area		
	3.2	Data sources	18
	3.2.	1 Data acquisition	18
	3.3	Objective one	. 19
	3.3.	1 Creation of the basin model	. 19
	3.3.	2 HEC- HMS Processing	20
	3.3.	3 Model Calibration	22
	3.4	Objective two	22
	3.4.	1 Determining roof catchment area	22
	3.4.	2 Determining rainfall intensity	. 22
	3.4.	3 Determining time of concentration	23
	3.4.	4 Runoff coefficient	. 23
	3.4.	5 Determining rainwater harvesting potential of the catchment area	. 24
	3.5	Objective three	. 25
	3.5.	1 Modelling the effect of the current land use on potential runoff	25
	3.5.	2 Modelling the effect of urbanization on potential runoff	25
	3.5.	3 T-testing for statistical significance	26
4	CH	APTER FOUR: RESULTS AND DISCUSSIONS	. 27
4.1 Objective One: Generation of the hydrologic model		Objective One: Generation of the hydrologic model	. 27
	4.1.	1 Hydrologic modeling datasets	. 27
	4.1.	2 Population and impervious layer	. 27
	4.1.	3 Catchment area delineation	. 28
	4.1.	4 HEC – HMS Processing	30
	4.1.	5 Model calibration	31
	4.2	Objective two	32
	4.2.	1 Determining roof catchment areas	32
	4.2.	2 Determining rainfall intensity	32
	4.2.	3 Determining the time of concentration	33
	4.2.	4 Runoff coefficient	. 34
	4.2.	5 Determining runoff generated from the roof catchments	. 34
	4.2.	6 Determining the water harvesting potential	35

	4.3	Objective Three	35
	4.3. wat	1 Modelling the impact of increasing urbanization from 40% to 60% level on the ershed runoff rates	. 36
	4.3. leve	2 Modelling the impact of increasing urbanization from 60% to 80% urbanization el on the watershed runoff rates	. 37
5	CH.	APTER FIVE: CHALLENGES, CONCLUSIONS AND RECOMMENDATIONS	39
	5.1	Challenges	. 39
	5.2	Conclusion	. 39
	5.3	Recommendations	. 39

1 CHAPTER ONE: INTRODUCTION

This chapter entails relevant information about the project background, problem statement, and justification, objectives of the study, purpose of the study and the scope of the study.

1.1 Background of study

The hydrological cycle describes water as a renewable and recyclable resource. It is a key determinant in the existence of life and agricultural activity. It is seemingly abundant on earth but in case of any scarcity, it is thought of as a precious resource. Being an integral of urban life, it is used in homes for several purposes such as drinking, cooking and even watering gardens. Away from homes, it is used for fishing, navigation and recreation. Storm water runoff is a part of this cycle. It is described as that portion of precipitation that is not lost to interception, surface detention, evaporation and infiltration.(Nsubuga, Namutebi and Nsubuga-ssenfuma, 2014) However, many parts of the world today are being challenged by the increasing volumes of this runoff. Urban storm water challenges are on the increase at a global scale and Uganda has not been spared either.(Kitutu, 2013).Several towns including Tororo are faced with the above.(Perdikaki and Mason, 1999)

Largely due to urbanization and increased population growth, most municipalities in Uganda face major storm water challenges: surfaces that used to absorb and filter water are currently covered with streets, building tops and parking lots.(Erickson, Weiss and Gulliver, 2013) This has led to a change in the way water flows through catchments; water that once infiltrated the earth, recharging surface and ground water supplies or that was released by plants and trees through evaporation, or re-use for gardens, now runs off impervious surfaces. By the year 2002 as indicated by the Uganda Bureau of Statistics, the percentage of impervious surface was 7.5 and as of the year 2014, this value was reported at a percentage of 9.172 that is an increase by 18.5% in a period of 12 years. The world is on the move towards technology and more urbanization, an indicator that in the future, even the smallest pervious surface areas that can still be seen will be rendered impervious. The more the impervious surfaces, the more runoff is generated.

Additionally, changes in the climatic patterns, attributed to the warmer global temperatures in the atmosphere due to the buildup of carbon dioxide and other greenhouse gases induced largely by

REFERENCES

- Armson, D., Stringer, P. and Ennos, A. R. (2013) 'The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK', Urban Forestry and Urban Greening, 12(3), pp. 282–286. doi: 10.1016/j.ufug.2013.04.001.
- Bhaskar, J. and Suribabu, C. R. (2014) 'Estimation of surface run-off for urban area using integrated remote sensing and GIS approach', *Jordan Journal of Civil Engineering*, 8(1), pp. 70–80.
- Bhavsar, P. N., Dahiwelkar, S. J. and Mh, A. (2014) 'WATER SECURITY FOR VILLAGE GAVHALI THROUGH ROOF TOP RAIN WATER HARVESTING', pp. 68–74.
- Chahar, B. R., Graillot, D. and Gaur, S. (2012) 'Storm-Water Management through Infiltration Trenches', *Journal of Irrigation and Drainage Engineering*, 138(3), pp. 274–281. doi: 10.1061/(ASCE)IR.1943-4774.0000408.
- Erickson, A. J., Weiss, P. T. and Gulliver, J. S. (2013) 'Optimizing stormwater treatment practices: A handbook of assessment and maintenance', *Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance*, (Pitt 2002), pp. 1–337. doi: 10.1007/978-1-4614-4624-8.
- Fratini, C. F. *et al.* (2012) 'Three Points Approach (3PA) for urban flood risk management : A tool to support climate change adaptation through transdisciplinarity and multifunctionality', pp. 1–15.
- Garrison, N. *et al.* (2011) 'Capturing Rainwater from Rooftops : An Efficient Water Resource Management Strategy that Increases Supply and Reduces Pollution', (November).
- Göbel, P., Dierkes, C. and Coldewey, W. G. (2007) 'Storm water runoff concentration matrix for urban areas', *Journal of Contaminant Hydrology*, 91(1–2), pp. 26–42. doi: 10.1016/j.jconhyd.2006.08.008.
- Grimaldi, S. *et al.* (2012) 'Time of concentration: a paradox in modern hydrology', *Hydrological Sciences Journal*, 57(2), pp. 217–228. doi: 10.1080/02626667.2011.644244.
- Jeyakumar, P. *et al.* (2014) 'A novel approach to quantify the impact of soil water repellency on run-off and solute loss', *Geoderma*, 221–222, pp. 121–130. doi: 10.1016/j.geoderma.2014.01.008.
- Kitutu (2013) 'Study of the Natural -Hazards Vulnerability and Risk Profiles in Hot-Spot Areas As a Support to Early Warning, Disaster Preparedness and Risk Reduction Measures un

Uganda'.

- Luo, H. *et al.* (2011) 'Green Roof Assessment by GIS and Google Earth', 10, pp. 2307–2313. doi: 10.1016/j.proenv.2011.09.360.
- Merz, R., Blöschl, G. and Parajka, J. (2006) 'Spatio-temporal variability of event runoff coefficients', *Journal of Hydrology*, 331(3–4), pp. 591–604. doi: 10.1016/j.jhydrol.2006.06.008.
- Nachshon, U., Netzer, L. and Livshitz, Y. (2016) 'Land cover properties and rain water harvesting in urban environments', *Sustainable Cities and Society*, 27, pp. 398–406. doi: 10.1016/j.scs.2016.08.008.
- Nsubuga, F. N. W., Namutebi, E. N. and Nsubuga-ssenfuma, M. (2014) 'Water Resources of Uganda : An Assessment and Review', (October), pp. 1297–1315.
- Ouyang, W. *et al.* (2012) 'Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing', *Journal of Environmental Management*, 113, pp. 467–473. doi: 10.1016/j.jenvman.2012.10.017.
- Pande, P. and Telang, S. (2014) 'Calculation of Rainwater Harvesting Potential by Using Mean Annual Rainfall, Surface Runoff and Catchment area', 3(7), pp. 200–204.
- Perdikaki, K. and Mason, C. F. (1999) 'Impact of road run-off on receiving streams in Eastern England', *Water Research*, 33(7), pp. 1627–1633. doi: 10.1016/S0043-1354(98)00396-0.
- Porse, E. C. (2013) 'Stormwater Governance and Future Cities', pp. 29–52. doi: 10.3390/w5010029.
- Roy, D. *et al.* (2013) 'CALIBRATION AND VALIDATION OF HEC-HMS MODEL FOR A RIVER BASIN IN EASTERN INDIA', 8(1), pp. 40–56.
- Roy, U. and Dissanayake, S. (2011) 'Comparison of Factors Associated with Run-Off-Road and Non-Run-Off Road Crashes in Kansas', *Journal of the Transportation Research Forum*, 50(2), pp. 69–86.
- Satterthwaite, D. (2008) 'UNITED NATIONS EXPERT GROUP MEETING ON POPULATION DISTRIBUTION , URBANIZATION , INTERNAL MIGRATION AND DEVELOPMENT Population Division Department of Economic and Social Affairs United Nations Secretariat New York , 21-23 January 2008 CLIMATE CHANGE AND UR', (January), pp. 21–23.

Schield, M. (2013) 'Two-Group Hypothesis Tests : Excel 2013 T-TEST Command by Excel T-

TEST Command', pp. 1–19.

- US Army Corps of Engineers (2015) 'HEC-HMS Hydrologic Modeling System', User's Manual Version 4.1 CPD-74A, (July), pp. 1–600.
- Vargas, D. and Johnson, P. (2009) 'RAINWATER HARVESTING: A SUSTAINABLE SOLUTION TO by', (August).
- Walsh, C. J., Fletcher, T. D. and Ladson, A. R. (2009) 'Retention Capacity: A Metric to Link Stream Ecology and Storm-Water Management', *Journal of Hydrologic Engineering*, 14(4), pp. 399–406. doi: 10.1061/(ASCE)1084-0699(2009)14:4(399).
- Young, C. B., McEnroe, B. M. and Rome, A. C. (2009) 'Empirical Determination of Rational Method Runoff Coefficients', *Journal of Hydrologic Engineering*, 14(12), pp. 1283–1289. doi: 10.1061/(ASCE)HE.1943-5584.0000114.
- Armson, D., Stringer, P. and Ennos, A. R. (2013) 'The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK', Urban Forestry and Urban Greening, 12(3), pp. 282–286. doi: 10.1016/j.ufug.2013.04.001.
- Bhaskar, J. and Suribabu, C. R. (2014) 'Estimation of surface run-off for urban area using integrated remote sensing and GIS approach', *Jordan Journal of Civil Engineering*, 8(1), pp. 70–80.
- Bhavsar, P. N., Dahiwelkar, S. J. and Mh, A. (2014) 'WATER SECURITY FOR VILLAGE GAVHALI THROUGH ROOF TOP RAIN WATER HARVESTING', pp. 68–74.
- Chahar, B. R., Graillot, D. and Gaur, S. (2012) 'Storm-Water Management through Infiltration Trenches', *Journal of Irrigation and Drainage Engineering*, 138(3), pp. 274–281. doi: 10.1061/(ASCE)IR.1943-4774.0000408.
- Erickson, A. J., Weiss, P. T. and Gulliver, J. S. (2013) 'Optimizing stormwater treatment practices: A handbook of assessment and maintenance', *Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance*, (Pitt 2002), pp. 1–337. doi: 10.1007/978-1-4614-4624-8.
- Fratini, C. F. *et al.* (2012) 'Three Points Approach (3PA) for urban flood risk management : A tool to support climate change adaptation through transdisciplinarity and multifunctionality', pp. 1–15.
- Garrison, N. *et al.* (2011) 'Capturing Rainwater from Rooftops : An Efficient Water Resource Management Strategy that Increases Supply and Reduces Pollution', (November).

- Göbel, P., Dierkes, C. and Coldewey, W. G. (2007) 'Storm water runoff concentration matrix for urban areas', *Journal of Contaminant Hydrology*, 91(1–2), pp. 26–42. doi: 10.1016/j.jconhyd.2006.08.008.
- Grimaldi, S. *et al.* (2012) 'Time of concentration: a paradox in modern hydrology', *Hydrological Sciences Journal*, 57(2), pp. 217–228. doi: 10.1080/02626667.2011.644244.
- Jeyakumar, P. *et al.* (2014) 'A novel approach to quantify the impact of soil water repellency on run-off and solute loss', *Geoderma*, 221–222, pp. 121–130. doi: 10.1016/j.geoderma.2014.01.008.
- Kitutu (2013) 'Study of the Natural -Hazards Vulnerability and Risk Profiles in Hot-Spot Areas As a Support to Early Warning, Disaster Preparedness and Risk Reduction Measures un Uganda'.
- Luo, H. *et al.* (2011) 'Green Roof Assessment by GIS and Google Earth', 10, pp. 2307–2313. doi: 10.1016/j.proenv.2011.09.360.
- Merz, R., Blöschl, G. and Parajka, J. (2006) 'Spatio-temporal variability of event runoff coefficients', *Journal of Hydrology*, 331(3–4), pp. 591–604. doi: 10.1016/j.jhydrol.2006.06.008.
- Nachshon, U., Netzer, L. and Livshitz, Y. (2016) 'Land cover properties and rain water harvesting in urban environments', *Sustainable Cities and Society*, 27, pp. 398–406. doi: 10.1016/j.scs.2016.08.008.
- Nsubuga, F. N. W., Namutebi, E. N. and Nsubuga-ssenfuma, M. (2014) 'Water Resources of Uganda : An Assessment and Review', (October), pp. 1297–1315.
- Ouyang, W. *et al.* (2012) 'Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing', *Journal of Environmental Management*, 113, pp. 467–473. doi: 10.1016/j.jenvman.2012.10.017.
- Pande, P. and Telang, S. (2014) 'Calculation of Rainwater Harvesting Potential by Using Mean Annual Rainfall, Surface Runoff and Catchment area', 3(7), pp. 200–204.
- Perdikaki, K. and Mason, C. F. (1999) 'Impact of road run-off on receiving streams in Eastern England', *Water Research*, 33(7), pp. 1627–1633. doi: 10.1016/S0043-1354(98)00396-0.
- Porse, E. C. (2013) 'Stormwater Governance and Future Cities', pp. 29–52. doi: 10.3390/w5010029.
- Roy, D. et al. (2013) 'CALIBRATION AND VALIDATION OF HEC-HMS MODEL FOR A

RIVER BASIN IN EASTERN INDIA', 8(1), pp. 40–56.

- Roy, U. and Dissanayake, S. (2011) 'Comparison of Factors Associated with Run-Off-Road and Non-Run-Off Road Crashes in Kansas', *Journal of the Transportation Research Forum*, 50(2), pp. 69–86.
- Satterthwaite, D. (2008) 'UNITED NATIONS EXPERT GROUP MEETING ON POPULATION DISTRIBUTION , URBANIZATION , INTERNAL MIGRATION AND DEVELOPMENT Population Division Department of Economic and Social Affairs United Nations Secretariat New York , 21-23 January 2008 CLIMATE CHANGE AND UR', (January), pp. 21–23.
- Schield, M. (2013) 'Two-Group Hypothesis Tests : Excel 2013 T-TEST Command by Excel T-TEST Command', pp. 1–19.
- US Army Corps of Engineers (2015) 'HEC-HMS Hydrologic Modeling System', User's Manual Version 4.1 CPD-74A, (July), pp. 1–600.
- Vargas, D. and Johnson, P. (2009) 'RAINWATER HARVESTING: A SUSTAINABLE SOLUTION TO by', (August).
- Walsh, C. J., Fletcher, T. D. and Ladson, A. R. (2009) 'Retention Capacity: A Metric to Link Stream Ecology and Storm-Water Management', *Journal of Hydrologic Engineering*, 14(4), pp. 399–406. doi: 10.1061/(ASCE)1084-0699(2009)14:4(399).
- Young, C. B., McEnroe, B. M. and Rome, A. C. (2009) 'Empirical Determination of Rational Method Runoff Coefficients', *Journal of Hydrologic Engineering*, 14(12), pp. 1283–1289. doi: 10.1061/(ASCE)HE.1943-5584.0000114.
- Armson, D., Stringer, P. and Ennos, A. R. (2013) 'The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK', Urban Forestry and Urban Greening, 12(3), pp. 282–286. doi: 10.1016/j.ufug.2013.04.001.
- Bhaskar, J. and Suribabu, C. R. (2014) 'Estimation of surface run-off for urban area using integrated remote sensing and GIS approach', *Jordan Journal of Civil Engineering*, 8(1), pp. 70–80.
- Bhavsar, P. N., Dahiwelkar, S. J. and Mh, A. (2014) 'WATER SECURITY FOR VILLAGE GAVHALI THROUGH ROOF TOP RAIN WATER HARVESTING', pp. 68–74.
- Chahar, B. R., Graillot, D. and Gaur, S. (2012) 'Storm-Water Management through Infiltration Trenches', *Journal of Irrigation and Drainage Engineering*, 138(3), pp. 274–281. doi:

10.1061/(ASCE)IR.1943-4774.0000408.

- Erickson, A. J., Weiss, P. T. and Gulliver, J. S. (2013) 'Optimizing stormwater treatment practices:
 A handbook of assessment and maintenance', *Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance*, (Pitt 2002), pp. 1–337. doi: 10.1007/978-1-4614-4624-8.
- Fratini, C. F. *et al.* (2012) 'Three Points Approach (3PA) for urban flood risk management : A tool to support climate change adaptation through transdisciplinarity and multifunctionality', pp. 1–15.
- Garrison, N. *et al.* (2011) 'Capturing Rainwater from Rooftops : An Efficient Water Resource Management Strategy that Increases Supply and Reduces Pollution', (November).
- Göbel, P., Dierkes, C. and Coldewey, W. G. (2007) 'Storm water runoff concentration matrix for urban areas', *Journal of Contaminant Hydrology*, 91(1–2), pp. 26–42. doi: 10.1016/j.jconhyd.2006.08.008.
- Grimaldi, S. *et al.* (2012) 'Time of concentration: a paradox in modern hydrology', *Hydrological Sciences Journal*, 57(2), pp. 217–228. doi: 10.1080/02626667.2011.644244.
- Jeyakumar, P. *et al.* (2014) 'A novel approach to quantify the impact of soil water repellency on run-off and solute loss', *Geoderma*, 221–222, pp. 121–130. doi: 10.1016/j.geoderma.2014.01.008.
- Kitutu (2013) 'Study of the Natural -Hazards Vulnerability and Risk Profiles in Hot-Spot Areas As a Support to Early Warning, Disaster Preparedness and Risk Reduction Measures un Uganda'.
- Luo, H. *et al.* (2011) 'Green Roof Assessment by GIS and Google Earth', 10, pp. 2307–2313. doi: 10.1016/j.proenv.2011.09.360.
- Merz, R., Blöschl, G. and Parajka, J. (2006) 'Spatio-temporal variability of event runoff coefficients', *Journal of Hydrology*, 331(3–4), pp. 591–604. doi: 10.1016/j.jhydrol.2006.06.008.
- Nachshon, U., Netzer, L. and Livshitz, Y. (2016) 'Land cover properties and rain water harvesting in urban environments', *Sustainable Cities and Society*, 27, pp. 398–406. doi: 10.1016/j.scs.2016.08.008.
- Nsubuga, F. N. W., Namutebi, E. N. and Nsubuga-ssenfuma, M. (2014) 'Water Resources of Uganda : An Assessment and Review', (October), pp. 1297–1315.

- Ouyang, W. *et al.* (2012) 'Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing', *Journal of Environmental Management*, 113, pp. 467–473. doi: 10.1016/j.jenvman.2012.10.017.
- Pande, P. and Telang, S. (2014) 'Calculation of Rainwater Harvesting Potential by Using Mean Annual Rainfall, Surface Runoff and Catchment area', 3(7), pp. 200–204.
- Perdikaki, K. and Mason, C. F. (1999) 'Impact of road run-off on receiving streams in Eastern England', *Water Research*, 33(7), pp. 1627–1633. doi: 10.1016/S0043-1354(98)00396-0.
- Porse, E. C. (2013) 'Stormwater Governance and Future Cities', pp. 29–52. doi: 10.3390/w5010029.
- Roy, D. *et al.* (2013) 'CALIBRATION AND VALIDATION OF HEC-HMS MODEL FOR A RIVER BASIN IN EASTERN INDIA', 8(1), pp. 40–56.
- Roy, U. and Dissanayake, S. (2011) 'Comparison of Factors Associated with Run-Off-Road and Non-Run-Off Road Crashes in Kansas', *Journal of the Transportation Research Forum*, 50(2), pp. 69–86.
- Satterthwaite, D. (2008) 'UNITED NATIONS EXPERT GROUP MEETING ON POPULATION DISTRIBUTION , URBANIZATION , INTERNAL MIGRATION AND DEVELOPMENT Population Division Department of Economic and Social Affairs United Nations Secretariat New York , 21-23 January 2008 CLIMATE CHANGE AND UR', (January), pp. 21–23.
- Schield, M. (2013) 'Two-Group Hypothesis Tests : Excel 2013 T-TEST Command by Excel T-TEST Command', pp. 1–19.
- US Army Corps of Engineers (2015) 'HEC-HMS Hydrologic Modeling System', User's Manual Version 4.1 CPD-74A, (July), pp. 1–600.
- Vargas, D. and Johnson, P. (2009) 'RAINWATER HARVESTING: A SUSTAINABLE SOLUTION TO by', (August).
- Walsh, C. J., Fletcher, T. D. and Ladson, A. R. (2009) 'Retention Capacity: A Metric to Link Stream Ecology and Storm-Water Management', *Journal of Hydrologic Engineering*, 14(4), pp. 399–406. doi: 10.1061/(ASCE)1084-0699(2009)14:4(399).
- Young, C. B., McEnroe, B. M. and Rome, A. C. (2009) 'Empirical Determination of Rational Method Runoff Coefficients', *Journal of Hydrologic Engineering*, 14(12), pp. 1283–1289. doi: 10.1061/(ASCE)HE.1943-5584.0000114.