

FACULTY OF ENGINEERING DEPARTMENT OF MINING AND WATER RESOURCES ENGINEERING

SELECTION OF AN OPTIMAL UNDERGOUND ACCESS METHOD TO A GOLD ORE BODY.

(CASE STUDY : ALJOURDA MINING COMPANY).

BY

ARAPMWOTIL SAMUEL

DAT

Reg No. BU/UP/2014/341.

Email:sikoriasamuel@gmail.com

SUPERVISOR: ENG. NASASIRA MICHAEL BAKAMAA CO- SUPERVISOR: Ms. NANGENDO JACQUELINE

A final year research project submitted to the department of mining and water resources engineering as a partial fulfilment of the requirements for the a ward of Bachelor of Science degree in mining Engineering of Busitema University

December 2018

ABSTRACT

This project aims in choosing primary access and transportation options for underground mine. The main accesses to underground orebodies are shafts, Adits and ramps. They serve both as a way to transport ore or waste, and move people, equipment or supplies. In underground mines, the ore transport option significantly affects the productivity and profitability of the company. Then, choice of access is a way to reduce costs and improve production. This study is primarily based on case study in Bukana- Namayingo .More economically attractive alternatives to ramp is changing from 350 m to 1000 m, depending on the mining country and cultural underground mine development. For some of them the depth of 1000 m would be the threshold for use of the access by decline/ramp. The main criteria in determining access are depth, rate of production and mine life. In Uganda, mines reach depths greater than 150 m and shaft access is more common. In Australia there are mines that use a ramp (decline) to a depth greater than 1000 m. In Brazil, underground mines are still shallow (depth up to 800 m) and feature short mine life and, most of them have chosen access by decline/ramp. Results of this study corroborate the statement that decline is ideal for shallow mines and low production rates and that shaft is for deep mines, high production rate and poor underground conditions.

ARAPMWOTIL SAMUEL BU/UP/2014/341

DECLARATION

I ARAPMWOTIL SAMUEL a student pursuing a Bachelor's degree in Mining Engineering at BUSITEMA UNIVERSITY declare that this research project report is an original work of mine and has never been submitted in this way or any other to any university

This report has never been published by any other student/individual in any institution. SIGNATURE.

BUSITEMA UNIVERSITY LIBRARY

ACCESS NO. Fer 2397

CLASS No.:....

ARAPMWOTIL SAMUEL BU/UP/2014/341

FINAL YEAR PROJECT

ii

APPROVAL

This final project report has been submitted to the Faculty of Engineering for examination with approval of my supervisors

MAIN SUPERVISOR

Eng. NASASIRA MICHAEL BAKAMAA

Signature.....

CO. SUPERVISOR

Ms: NANGENDO JACQUELINE Signature. Incompando Date. 19108/2018

DEDICATION

This report is dedicated to my beloved parents Mr.Mwotil Jackson & Chemutai Janet in appreciation for their selfless care and unflinching support provided to me since childhood, and for the spirit of hard work, courage and determination instilled into me, which attributes to successes, I have cherished with firmness and which have indeed made me what I am today.

ARAPMWOTIL SAMUEL BU/UP/2014/341

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest appreciation to God for giving me the opportunity to carry out the research project. I also wish to thank my family; dad, mum brothers and sisters for their encouragement and support, the Department of mining and water resources engineering for their support throughout this studio. Their support has been invaluable to the completion of project report .I also thank aljourda mining company for allowing me access the data concerning my research . Finally, sincere thanks goes to my University Project Supervisors; Nassasira Michael bakama and Miss. Nangendo Jacqueline for their presence for consultation during the entire period. My coursemates cannot go unmentioned for their encouragement and continued assistance during this whole period of research.

ARAPMWOTIL SAMUEL BU/UP/2014/341

.

LIST OF ACRYNOMS

Acronyms

- 1. BU BUSITEMA UNIVERSITY
- 2. GIS- GEOGRAPHICAL INFORMATION SYSTEM
- 3. GPS-GEOGRAPHICAL POSITIONING SYSTEM
- 4. t/d- tones per day
- 5. g/t -grams per tone

LIST OF TABLES

Table 1-2 shaft comparison.	.9
Table 2-2 modes of accessing a deposit	4
Table 4-4 showing the mineral content with the depth	26
Table 5-4 The results of estimated resources	30
Table 6 the reef orientation	38
Table 7 the distances between the reefs	39
Table 8 the Assay data for developing a model Error! Bookmark not define	d.
Table 9 the costs of sinking a shaft	39
Table 10 showing the ramp costs	11

ARAPMWOTIL SAMUEL BU/UP/2014/341

•

LIST OF FIGURES

Figure 1-2 the contour model showing reef distribution	6
Figure 2-2 The access methods to an orebody	7
Figure 3-2 underground access methods	7
Figure 4-2 ore extraction by a ramp	
Figure 5-3 the lithology of bukana	
Figure 6-4 showing the calculated distance of the reefs represented by a graph	24
Figure 7-4 showing how grade varies in each reef	25
Figure 8-4 explaining the distances between the reefs	25
Figure 9-4 showing pie chart of grade varying with depth	
Figure 10-4 comparison between a shaft and a ramp	

ARAPMWOTIL SAMUEL BU/UP/2014/341

*1

•

TABLE OF CONTENT

ABSTRACT	i
DECLARATION	. ii
APPROVAL	111
DEDICATION	iv
ACKNOWLEDGEMENT	. v
LIST OF ACRYNOMS	vi
LIST OF TABLES	vii
LIST OF FIGURES	/111
TABLE OF CONTENT	ix
CHAPTER ONE : INTRODUCTION	.1
1.0 INTRODUCTION	.1
1.1 BACKGROUND	.1
1.2 PROBLEM STATEMENT	.2
1.3 PURPOSE OF THE STUDY	.3
1.4 OBJECTIVE OF THE STUDY	.3
1.4.1 Main objective	.3
1.4.2 Specific objective	.3
1.5 SCOPE OF THE STUDY	.3
1.6 JUSTIFICATION	.3
CHAPTER TWO: LITERATURE REVIEW	.4
2.0 LITERATURE REVIEW	.4
2.1 Finding signs of the mineral in the locality or general indications	.4
2.1.1 Geo-chemical studies	.4
2.2 Finding the deposit or preliminary proving	5
2.3 TYPES OF UNDERGROUND ACCESS METHODS	7
2.3.1 ADITS	8
2.3.2 SHAFTS	.8
2.3.3 RAMP ACCESS	12
ARAPMWOTIL SAMUEL BU/UP/2014/341 FINAL YEAR PROJECT	ix

2.4 MODES OF ACCESSING A DEPOSIT	14
2.5 ISSUES TO BE CONSIDERED AND CRITERIA FOR DECISION MAKING ACCESS METHODS TO AN	
OREBODY	14
CHAPTER THREE: METHODOLOGY	17
3.0 METHODOLOGY	17
3.1 Location & Access.	17
3.2 History of gold mining in bukana	17
3.3 General Geology	17
3.4 TOOLS AND EQUIPMENT USED	18
3.4.1 Analyzing the Deposit Geometry.	19
3.4.2 Developing a geological model	20
3.4.3 Determining optimal access method to a gold ore body	21
CHAPTER FOUR: RESULTS AND DISCUSSION	23
4.0 RESULTS AND DISCUSSION	23
4.1 reef geometry	24
4.1.1 Distance of the reefs.	24
4.1.2 Reef grades	24
4.1.3 Distance between the reefs	25
4.1.4 The mineral content with depth	26
4.2 Geological model	27
4.3 Determining the optimal access method to an ore body	30
4.3.1 Rate of production	30
4.3.2 Shaft and a ramp having different dimensions showing costs	31
CHAPTER FIVE: CONCLUSION AND RECOMMENDATION	35
5.0 CONCLUSION AND RECOMMENDATION	35
5.1 Conclusion	35
5.2 Recommendations	35
REFERENCES	36
APPENDICES	38
Appendices A	38
Appendices B	39
Appendices C	39
ARAPMWOTIL SAMUEL BU/UP/2014/341 FINAL YEAR PROJECT	×

•

ARAPMWOTIL SAMUEL BU/UP/2014/341

•

FINAL YEAR PROJECT

xi

CHAPTER ONE : INTRODUCTION

1.0 INTRODUCTION

1.1 BACKGROUND

Ever since mining began, miners have driven Adits and shafts into the earth (Hartman, H.L. and Mutmansky, J.M., 2002). Vertical shafts are known to have existed in the 15th century or even earlier. Many inclined shafts (in excess of 300 m are shown on plans) were sunk during the first 20 years of mining in the Witwatersrand Basin. These were seen as the most obvious way of following the narrow steeply-dipping tabular gold reefs. Soon their capacity and length constraints became apparent and vertical shafts from surface became the norm (Wilson, R.B., Willis, R.P.H. and Du Plessis, A.G., 2004, October). As mining progressed even deeper, and while the extent of the orebody was still in doubt, inclined shafts were again introduced as subincline shafts. Later sub-vertical shafts were widely applied in preference to sub-incline shafts. Recently, however, sub-inclines are again finding favor as a means of accessing orebodies below existing shaft infrastructure.

The application of a suitable mining method has always been a topical problem (Pang, B. and Lee, L., 2008). The dynamic conditions impose specific requirements for the processes of mining mineral resources. The geological conditions, economical changes and the improvement of mining technology and tech-niques are few of the factors which determine the choice of mining method(Gligoric, Beljic and Simeunovic, 2010). In order to prosper, each mining organization needs to consider the possibilities of utilizing underground or open-pit mining or combining both methods depending on the conditions, as well as to look for certain tendencies in a global scale for a preferred method(Stacey, 2009)

In Aljourda Mining Company site of Bukana

1. The Current Status

Surface approach has failed to yield sizable profitable runoff mine

2. Need

ARAPMWOTIL SAMUEL BU/UP/2014/341

References

- Didari, V. and Gerçek, H. (1988) 'Sinking of the deepest shaft in Turkey', *Mining Science and Technology*, 7(2), pp. 217–224. doi: 10.1016/S0167-9031(88)90622-6.
- Friedman, K. (2003) 'Theory construction in design research: criteria: approaches, and methods', *Design studies*, 24(6), pp. 507–522. doi: 10.1016/S0142-694X(03)00039-5.
- Gligoric, Z., Beljic, C. and Simeunovic, V. (2010) 'Shaft location selection at deep multiple orebody deposit by using fuzzy TOPSIS method and network optimization', *Expert Systems with Applications*, 37(2), pp. 1408–1418. doi: 10.1016/j.eswa.2009.06.108.
- Graham, C. and Evans, V. (2008)
 'The evolution of shaft sinking systems in the western world and

the improvement in sinking rates', CIM Magazine, 3(4), pp. 77–79.

- Kwinta, A. (2015) 'Conditions of deformation prediction in the shaft', in Vertical and Decline Shaft Sinking - Proceedings of the International Mining Forum 2015.
- Livak, K. J. and Schmittgen, T. D. (2001) 'Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.', *Methods (San Diego, Calif.)*, 25(4), pp. 402–8. doi: 10.1006/meth.2001.1262.
- Stacey, P. (2009) 'Pit slope design process', in *Slope Stability 2009*.
- Wang, B. *et al.* (2015) 'Mechanical properties of a self-walking sinking platform for ultra-deep shaft sinking', *Electronic Journal of Geotechnical Engineering*, 20(18), pp. 10995– 11006.

1