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ABSTRACT

Intelligent Analysis Systems (lAS) are gaining recognition in. developing countries, Uganda

inclusive. 111is report describes the various ct)Oiponent~ of the development of a woven fahl'h:

classification system. Multi-dimensional set of data offabric physical properties from 15 fabric

samples was usedas the input data tothe system. The data was analyzed using PCA to extract the

selected four pes. Using the extracted pes, k-means clustering; Was performed to obtain three

fabric Clusters (k=3) and thus fabric classes (A~ B arid C). The system was developed using a single

layer feed forward backpropagation NN in the names of a perceptron. Training was done for 467

epochs and there afler r-square was calculated to determine the performance of the modelling

network. Linear regression was used for comparision of performance. Also the performance of

linear regression was determined using r-square.The intelligent classification system has the

potential of making the public textile market wen balanced because the buyers/customers will not

be exploited. since they will he correct fabric c1aSSCR to he purchased.
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CHAPTER ONE U..JTROD'UCTION

1.0 INTRODUCT[O~

This chapter consists of tho background ofthe .study, problem statement, objectives of the study,

.jusiification, significance, scope and the.limitations.

i.l BACi:(GROUND

Fabric class is of prime importancein determining the suitability of a fabric I()f a specific end use,

TIle. fabric should possess .8 set of fabric properties or parameters to fulfil the requirements

expected hy thetextile product, Textile fabrics arc manufactured.for many different end uses, each.

of which has different performance requirements. The overall fabric Class comprises offhreemajor

components, namely physical properties, chemical properties and the visual appearanCe of the

fabric. The chemical and 'physical structures of a fabric determine how it will perform and

ultimately wherberit is- acceptable for a particular usc ..Fabric test methods have 'been designed to

measure physical and chemical fabric properties. National and international organizations such as

ISO, A$TM, and AArCC .devclop and publish standard test methods as well as standard

performance specifications that are used to ensure product quality in the market. place and 10

facilitate global trade (Collier and Epps, 19(9).

In current fabric evaluation systems being used it can be found that subjective measurement

techniques & objective measurement techniques are mainly used to evaluate fabric handle .. In

subjective measurement fabric is evaluated ·by band feel & 'tactile sensation as demonstrated by
(Luible er.al. 2007). P&.CC3IlS.9 handfeel is subjective there may not be a consisrcmasscssmentand

there are methods which are introduced to measure the' fabric handle by fabric mechanical

properties according. to (Kawahara and Niwa, 1991). And also prevailing systems include

measuring garment appearance quality as demonstrated by (Gersak, 2002) and fabric comfort to

determine 'the wearability according' to·(Raj-and Srcenivasan 2(09).

Evaluating fabrics by testing & measuring the individual properties separately will not give an

overall quantifiable measure of the class of' a particular fabric. BC.Cf~USC. the influence fabric

properties 'have on the fabric class may vary with the. property analysed. A certain fabric may

1
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