

FACULTY OF ENGINEERING DEPARTMENT OF MINING AND WATER RESOURCES ENGINEERING WATER RESOURCES ENGINEERING

FINAL YEAR PROJECT REPORT

DESIGN OF A ROAD SIDE DRAINAGE SYSTEM ALONG THE KATWE-BWERA ROAD

MUHONGYA MOSES

BU-UP-2013-287

Email; hongyamoses13@gmail.com;

Tel.: 0787822525/0703747740

SUPERVISOR(S): MAIN SUPERVISOR: MR. BAAGALA BRIAN SSEMPIJJA CO-SUPERVISOR: MR. BADAZA MOHAMMED

A final year project report submitted to the Department of Mining and Water Resources Engineering as a partial fulfillment of the requirements for the award of a Bachelor of Science degree in Water Resources Engineering

MAY 2017

ABSTRACT

The purpose of this project is to design an efficient, economic easy to maintain drainage system for the Katwe-Bwera road located in Katwe-kabatooro TC, Kasese district in south western Uganda.

The catchment area characteristics and land use maps were developed by use of Arch map 10.1and QGIS soft wares showing the contours, slope, geology, soil type, land cover and watershed.

The Rational Method was used to determine the discharge. First the IDF curves were developed from the 12 year rainfall data from Kasese metrological center for a return period of 10 year using the Watkins and Fiddle's method.

Catchment areas, existing slopes of the roads and time of concentrations were calculated and computed by picking GPS points around the roads thus for points observed to pour their runoff towards the road in consideration which were integrated into a program called autoCADcivi3D which helped us estimate the area, existing slopes and the time of concentrations.

The concentration time was then got from Kiprich's equation for sub catchments which was 5minutes (min standard time of concentration as per Uganda road design manual) and it was used to get the critical rainfall intensity of **85mm/hr**. from the IDF curves

The catchment area developed in autoCADcivi3D was divided into four sub catchments A₁=77417m²and A₂=48971m², A₃=42,500m²and A₄=40772m²

The discharge was calculated $Q_1=0.547 \text{ m}^3/\text{s}$, $Q_2=0.806 \text{ m}^3/\text{s}$, $Q_3=1.136 \text{ m}^3/\text{s}$ and $Q_4=1.512 \text{ m}^3/\text{s}$ then used to determine the drainage channels with side slopes of 1H: 3V and the depth varying between 130mm and 450mm with varying base between 1450mm and 450mm.

Two culverts sizes were chosen to cater for the different discharges of diameter 900mm and 600mm.

The entire project was estimated to cost 494,312,500 ug.shs

MUHONGYA MOSES

ι.

DEDICATION

I dedicate this project to almighty God, the family of the late Kabau Richard, Mr. Matte Dan and Akunda Isaac who have tirelessly supported and guided me throughout my stay at Busitema University.

,

MUHONGYA MOSES

1

×., .

×.,

, ·

DECLARATION

I declare that this is my true and original piece of work and has never been submitted to any university or institution of higher learning by anybody for any academic award.

Date: 30/05/17

Sign: 3mg

MUHONGYA MOSES

BUSITEMA UNIVERSITY LIB.	RARY
CLASS No.	
ACCESS NO. Per 0873	

MUHONGYA MOSES

APPROVAL

This piece of work has been submitted for examination with due approval of my university supervisors.

ĩ

Date:

4.

۰ ^۱

Sign:

Mr. SSEMPIJJA BRIAN BAAGALA (Main Supervisor).

Date:

Sign:

Mr. BADAZA MOHAMMED (Co - Supervisor)

MUHONGYA MOSES

ACKNOWLEDGEMENT

First and foremost, I would like to thank Almighty God for His protection and guidance up to this stage in my life.

I feel highly indebted to the entire staff in the department of mining and water resources engineering fraternity for giving me knowledge in the fields of water resources engineering. Specifically, I am very grateful to my final year project supervisors Mr. Ssempijja Brain Baagala and Mr. Badaza Mohammed for their invaluable help and guidance throughout the project design period, May the Almighty God bless you abundantly.

In a special way, I would also wish to appreciate the kasese district Engineer Mr. kalende George, the Katwe-kabatooro TC Chief Mr.Kamarade Partrick, the water engineer Mr.BwambaleJames, the physical planner Mr.Bwambale Rogers and Mr.Okonzi Peter UNRA for their technical support, Uganda National Meteorological Department, and Ministry of Water and Environment for their assistance in data acquisition for the project.

Last but not least, I appreciate Mr. Mugisha Ronald and Ms. Masika Lilian, for the support they have continued to offer me in order to attain quality education. May the Almighty God bless you in abundance?

Finally, I thank all my friends and colleagues for the assistance they have given me in endeavors to see me through with my project. Best wishes to you all.

MUHONGYA MOSES

φĨ

ABSTRACT
DEDICATIONii
DECLARATION
APPROVALiv
ACKNOWLEDGEMENTv
LIST OF FIGURES
LIST OF TABLESix
ACRONYMSx
CHAPTER ONE: INTRODUCTION
1.0 Preamble1
1.1 Background of the Study1
1.2 Problem statement
1.3 Purpose of the study
1.4 Justification
1.5 Objectives of the Study
1.5.1 Main Objective
1.5.2 Specific Objectives
1.6 Scope of Study
CHAPTER TWO: LITERATURE REVIEW
2.1 Introduction
2.2 Drainage Terminology
2.2.1 Drainage
2,2.2 Road Drainage
2.2.3 Urban Drainage
2.2.4 Hydrological Cycle
2.2.5 Surface Runoff
2.2.6 Runoff Coefficient
2.2.7 Time of Concentration
Thus:5
2.2.8: Time of entry
Table 1: Time of entry (after DoE/NWC, 1981)
2.2.9: Time of flow
2.2.10: Areal Reduction Factor
2.2.11: Return Period
2.2.12: Sanitation

TABLE OF CONTENTS

MUHONGYA MOSES

*.• :

•.

BU-UP-2013-287

vilPage

2.4 Types of Drainage		6
2.4.1 Surface Water Drain	age	
2.4.2 Sub-Surface Water I	Drainage	
2.5 Types of Drainage Struc	tures	
2.5.1 Inlets		
2.5.2 Man Holes		9
2.5.3 Junction Chambers.		
2.5.4 Storm Water Drains		
2.5.5 Culverts		
2.5.6 Side Drains		
2.5.7 SCS (NRCS) Peak I	low Method	
CHAPTER THREE: METHO	DOLOGY	
3.1 Introduction		
3.2 Catchment area and Lan	d use analysis	
3.3 Data Analysis	······	
3.4 Estimation of Design Ra	infall Intensity	
3.5 Estimating of Design Flo	0WS	
3.6 Topographic Survey		
	· · · · · · · · · · · · · · · · · · ·	
3.8 Costing		
CHAPTER FOUR: ANALYS	IS AND DESIGN	
4.1 Introduction		
4.2 Catchment Area and Lan	d use Analysis	
4.3 Rainfall Analysis		
Table 2: Maximum daily rai	nfall	
4.4 Channel Design		
4.4.1 Estimation of Catch	ment Area	
4.5 Hydraulic Design		
4.5.1 Determination of Cl	nannel Dimensions	
CHAPTER FIVE: CONCLUS	IONS AND RECOMMENDATIONS	
5.1 Introduction		
5.2 Conclusions		
5.3 Recommendations		
REFERENCE		
BILL OF QUANTITIES (BO	Q) OF THE KATWE-BWERA ROAD	
MUHONGYA MOSES	BU-UP-2013-287	VII P a a to

APPENDICES	
------------	--

LIST OF FIGURES

Figure 1: hydrological cycle	_4
figure 2; analysis tool	22
figure 3: plot of daily maximum rainfall against return period	24
figure 4: idf for the rainfall	25

LIST OF TABLES

Table 1: Time of Entry (After Doe/Nwc, 1981)	5
Table 2: Maximum Daily Rainfall	22
Table 3: Ranked Rainfall Data With Corresponding Return Period	23
Table 4: Maximum 24 Hour Rainfall Intensity And Coefficient At	24
Table 5: Return Period And Duration	25
Table 6: Iterations for Drain 1	29
Table 7: Iterations for Drain 2	30
Table 8: Iterations for Drain 3	31
Table 9: Iterations for Drain 4	33

MUHONGYA MOSES

12

₹,

÷

ACRONYMS

AASHTO	America Association of State Highway and Transportation Officials
BÓQ	Bill of Quantities
DEM	Digital Elevation Model
GIS	Geographical Information System
GPS	Global Position System
IDF	Intensity Duration Frequency
MOWT	Ministry of Works and Transport
QGIŞ	Quantum Geographical Information System
ТС	Town Council
UNRA	Uganda National Roads Authority

MUHONGYA MOSES

۰.

÷

 $\hat{\gamma}_i$

۰,

a

k,

CHAPTER ONE: INTRODUCTION

1.0 Preamble

This chapter entails relevant information about the project, problem statement, purpose, justification, objectives, and the scope of the study

1.1 Background of the Study

Drainage is the process of interception and removal of water from over, and under the vicinity of the road surface. Drainage can be surface (where water is conveyed on the road surface and drainage channels), or subsurface (water flows underneath the pavement structure).

Surface and subsurface drainage of roads critically affects their structural integrity, life and safety to users, and is thus important during highway design and construction. Road designs therefore have to provide efficient means for removal of this water; hence the need for road drainage designs.

Drainage facilities are required to protect the road against damage from surface and sub-surface water. Traffic safety is also important as poor drainage can result in dangerous conditions like hydroplaning. Poor drainage can also compromise the structural integrity and life of a pavement. Drainage systems combine various natural and man-made facilities e.g. ditches, pipes, culverts, curbs to convey this water safely.

Uganda is a landlocked country and roads are the backbone of the economy since all produce and merchandise in and out of the country are transported by road.

In Uganda the maintenance and the development of the roads network is done by UNRA which was be established in July 2008 by the Act of the parliament. UNRA is responsible for development of new roads, management of road maintenance, road machinery management and axle load control.

The study was be centered on the katwe-Bwera road in Katwe-Kabatoro TC in kasese in western Uganda near the border of Uganda and Congo.

Tourism, fishing, salt mining and agriculture are some of the main activities carried out in this area but have been hindered due to the poor road network system caused by the poor drainage system along this road thus the need to design an efficient road drainage system

MUHONGYA MOSES

REFERENCE

Anon., 2002. Ethiopian Roads Authority (ERA) Drainage Design Manual. s.l.:s.n. Anon., march 2010. Department of Transport and Main Roads Road Drainage Manual. s.l.:s.n.

Bruce k ferguson, j. w. a. s., 1998. introduction to storm water. s.L:ISBN.

Chaudhry, M. H., 1993. Open Channel Flow. s.l.: Prentice-Hall, Inc.

Craig, R. F., 2004. Soil mechanics. 7th edition ed. s.1.: Spon Press.

Manual, (. w. D., december 2006, s.l.:s.n.

Martin, R., 2003. Highway Engineering. s.l.:Blackwell Publishing Ltd.

MOWT, July 2005. Road design mannual vol. 3. s.l.:s.n.

Overseas, 2003. Road Note 40. In: s.l.:s.n.

T.F.Fwa, 2006. The High Way Engineering Hand Book. s.l.: Taylor & Francis Group.

Tennessee Department of Transportation, (., January 1, 2010. Design division drainage mannual. In: s.l.:s.n.

Tom V. Mathew and K V Krishna Rao, may, 7, 2007. Introduction to Transportation Engineering... s.l.:NPTEL.

Transportation, U. D. o., 2001. (U.S. Department of Transportation 2001). s.l.:U.S. Department of Transportation .

Transportation, U. D. o., 2001. U.S. Department of Transportation. s.l.:s.n.

TRL, 1993. s.l.:s.n.

works, M. o., 2000. Ministry of Works Central Materials Laboratory testing manual. s.l.: The United Republic of Tanzania.

Wright, H. P. &. D. K. K., n.d. Highway Engineering. s.l.:s.n.

Wright, P. &., 1979. s.l.:s.n.

MUHONGYA MOSES