

FACULTY OF ENGINEERING

DEPARTMENT OF WATER RESOURCES AND MINING ENGINEERING

WATER RESOURCES ENGINEERING PROGRAMME

APPLICATION OF GIS TO DELINEATE FLOOD PRONE AREAS

CASE STUDY KAWEMPE, UGANDA

BY

NAKKOMO JOANITAH

Reg.No. BU/UG/2014/109

Email: nakkomojoan00@gmail.com

R

Contacts: +256782247964

SUPERVISORS: 1. Mr. Okirya Martin

2. Mrs. Njuki Nakabuye Hope

A final year project report submitted in partial fulfillment of the requirements for the award of a Bachelor of Water Resources Engineering Degree of Busitema University

MAY, 2018

ABSTRACT

Many cities in the world, particularly those in Africa are faced with growing problems associated with flooding. Increased rain frequency and intensity alongside other factors such as settlement in flood plains, poor waste management, and increased surface run off exacerbate the situation. In Uganda, Kawempe is exposed to frequent flooding during the rainy seasons because it is in a low lying area with a high water table and it is characterized by poor drainage thus making a significant number of people, households, infrastructure, livelihoods and social services exposed to severe impacts of destruction, damage, dampness and health challenges whenever it floods.

The aim of this study is to delineate areas in an urban setting with a high potential for flood during, or after, extreme precipitation events. This is to be done using GIS-based analysis to create an impervious surface analysis and a runoff model using HEC HMS software.

Some of the objectives are to perform rainfall runoff for the flow contributing area and determining the extent of flood impact. However, the research will mainly be restricted to Kawempe where drainage is a major problem.

At the end of this project, a map of different areas in Kawempe with high potential of flooding will be obtained. This will help the concerned authorities to formulate the development strategies according to the available risk to the area i.e. making the process of resource allocation simple resulting in a smooth and effective implementation of the adopted flood risk strategy. The simulation model properly imitating the practical behavior of the flood hydrograph will be generated. The model will be tested and verified.

i

DECLARATION

I Nakkomo Joanitah declare to the best of my knowledge that the work presented in this project is my own and has never been presented to any University or higher institute of learning for any academic award.

a •	K	2		
Date	30th/5	118	 	

BUSITEMA UNIVERSITY LIBRARY CLASS No.:

ACCESS NO. TETOOLSY

APPROVAL

This project report on delineation of flood prone areas in Kawempe using GIS has been written under the supervision of;

Main supervisor

Mr. OKIRYA MARTIN

Signature

Date.....

Co-supervisor

Mrs. NJUKI NAKABUYE HOPE

Signature

Date.....

DEDICATION

With great pleasure I dedicate this project report to my lovely mother MRS. MUSISI DIANA MUKWABA for all the support she has given me to make me a better person in future.

Thank you so much dear mother

ACKNOWLEDGEMENT

My heartfelt thanks go to God, the Almighty for the gift of life and his continuous provisions throughout the preparation of this work. I also sincerely thank my dear supervisors; Eng. Okirya Martin and Madam Njuki Nakabuye Hope who have guided me with knowledge throughout this project and making sure that it is a success. Finally, I thank all my friends in the Bachelor of Science in Water Resources and Mining Engineering class of 2014/2015 academic year intake for standing together in academics and social aspects up to this academic year. To each of those and others whom I may have failed to mention, I owe a debt of gratitude for their help and insight. In a special way, I would like to thank all my lecturers at Busitema University who gave me the theoretical knowledge that will enhance my work in the practice of engineering in the field

LIST OF ACROYNMS

DWRM	Directorate of Water Resources Management	
MWE	Ministry of Water and Environment	
KCCA	Kampala Capital City Authority	
DEM	Digital Elevation Model	
NRSC	National Resources Conservation Services	
HEC-GeoHMS	Geospatial Hydrologic Modelling Extension	
HEC-HMS	Hydrologic Engineering Centre's Hydrologic Modeling System	

vi

.

LIST OF FIGURES

Figure 1: Graph of Max .Daily Rain against Return Period	
Figure 2:A graph showing Intensity-Duration Frequency Curves	21
Figure 3: Bwaise river representation in HMS Model	24
Figure 4: A flow chart of the GIS based hydrological modelling approach	
Figure 5: A chart representing the steps followed in the analysis	
Figure 6: A chart showing the procedures taken to determine the flooding extent	33
Figure 7: showing the Curve Number Grid in Kampala	35
Figure 8: Showing the Schematic HMS file	
Figure 9: Showing the calibrated results from the model	
Figure 10: A map showing the slope in Kawempe	
Figure 11: A map of Land use in Kawempe	40
Figure 12: A soil map of Kawempe	41
Figure 13: A Rainfall map of Kawempe	41
Figure 14: The model build up in GIS interface	
Figure 15: A Flood prone Map	
Figure 16: A map showing different parishes lying in different prone areas	
Figure 17: The google earth representation of the flood prone areas	45

LIST OF TABLES

Table 1: showing risk management phases	
Table 2: Spatial datasets considered in the study	15
Table 3:Maximum Daily Rainfall	
Table 4: Rainfall Intensities for various Return Periods	20
Table 6: Land use reclassification by NLCD	
Table 7: Showing the attribute of CN look-up table	22
Table 8:Showing the input basin and river reach parameter	24
Table 9: Showing the Global summary results from the model	36
Table 10: The sub-basins with their peak discharges	37
Table 11: Showing the parishes in the respective flood pone areas	44
Table 12: The google earth description of different places in the respective prone classes:	44

viii

Table of Contents

ABSTRACTi
DECLARATION ii
APPROVALiii
DEDICATION iv
ACKNOWLEDGEMENTv
LIST OF ACROYNMS
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER 1: INTRODUCTION
1.1 BACKGROUND
1.2 PROBLEM STATEMENT
1.3 PURPOSE OF STUDY
1.4 JUSTIFICATION OF THE STUDY
1.5 OBJECTIVES
1.6 SCOPE
CHAPTER 2: LITERATURE REVIEW
2.1 FLOODS
2.1.1 Urban Floods
2.1.2 Causes of Urban Flooding
2.1.3 Effect of Urban Flooding
2.2 FLOOD HAZARD MAPPING
2.2.1 The need for flood mapping6
2.2.2 The role of flood maps in integrated flood management7
2.3 THE CONCEPT OF RISK MANAGEMENT7
2.4 FLOOD MAPPING PROCESS AND PRODUCTS
2.4.1 Type of maps9
24.2 Data types and sources9
2.5 GEOGRAPHIC INFORMATION SYSTEM (GIS)11
2.5.1 Digital Elevation Model(DEM)12
2.5.2 HEC-HMS

CHAPTER 3: METHODOLOGY		
3.1 STUDY AREA		
3.2 MATERIALS AND EQUIPMENT14		
3.2.1 Sources of data1		
3.2.2 Data acquisition stage		
3.3 OBJECTIVE 1: RAINFALL-RUNOFF MODELLING		
3.3.1Generation of the Intensity Duration Frequency Curves		
3.3.2 Creating SCS Curve Number Grid using HEC-GeoHMS21		
3.3.3 Delineating the catchment2		
3.4 OBJECTIVE 2: GENERATION OF THEMATIC MAPS27		
3.4.1 Identification the basic factors and Collection of Data27		
3.4.2 Developing thematic maps27		
3.4.3 Weight overlay analysis28		
3.3 OBJECTIVE 3: DETERMINATION OF THE EXTENT OF FLOODING		
3.4.1 Analyzing the percentage influence of floods in the study		
3.4.3 Determination of different built-ups lying within the floodplains		
CHAPTER4: RESULTS AND DISCUSSIONS		
4.1 Hydrologic modeling datasets33		
4.2 Meteorological model datasets		
4.3 Model calibration37		
4.4 Thematic layers		
4.4.1 slope map		
4.4.2 Land cover map		
4.4.2 Soil map		
4.5 Model development		
4.5 Flooding Extent		
CHAPTER 5		
5.0 CHALLENGES FACED, CONCLUSION AND RECOMMENDATIONS		
3.5 CONCLUSION		
3.6 CHALLENGES		
3.7 RECOMMENDATIONS		

.

÷

. .

CHAPTER 1: INTRODUCTION

This chapter outlines the relevant information about the project: background, problem statement, justification, objectives of the study, purpose of the study and the scope of the study

1.1 BACKGROUND

In 2015, 376 natural disasters occurred worldwide, compared to 380 for the 2005-2014 average. Africa suffered from 62 natural disasters in 2015, compared to 68 for the 2005-2014 annual average, but climatological and meteorological disasters appeared more frequent in 2015, compared to their 2005-2014 annual average(Guha-sapir, Hoyois, & Below, 2015)

Floods are the most common natural disasters, most devastating, widespread and natural hazard that affect societies around the world causing considerable personal injury and property damage. (Dilley M, 2005) estimated that more than one-third of the world's land area is flood prone affecting some 82 percent of the world's population. About 196 million people in more than 90 countries are exposed to catastrophic flooding,(Papaioannou, Vasiliades, & Loukas, 2015) and that some 170,000 deaths were associated with floods worldwide between 1980 and 2000 (Programme-UNDP, 2004). These figures show that flooding is a major concern in many regions of the world The largest known floods of the Quaternary Period had peak discharges of nearly 20 million m3/s and resulted from breaches of glacial-age ice dams that blocked large midcontinent drainage systems during ice ages (Costa, 2004). Globally, the economic cost of extreme weather events and flood catastrophes is severe, and if it rises owing to climate change, it will hit poorest nations the hardest consequently, the poorest section of people will bear the brunt of it

The number of major flood disasters in the world has risen relentlessly over recent time. There were six in the 1950s; seven in the 1960s; eight in 1970s; eighteen in the 1980s; and twenty-six in the 1990s (UNDP, 2004). Problems related to flooding and vulnerability of the population have greatly increased in recent decades due to several factors including changes in land-use in the hinterlands, urbanization of flood-prone sites, squatter settlements and sub-standard constructions, and increased household density.(Guarín, Westen, & Montoya, 2004) The rapid urbanization in developing countries and world over has led to the massive increase in human settlement which is growing faster than the rate at which the drainage network is being enhanced causing a mismatch between service and urbanization. This leads to health, social and economic problems which affect the urban settlers especially the poor.(Paul, 2011)

Uganda is considered one of the world's most vulnerable and least climate resilient countries. Changing climate patterns, such as increased droughts, floods and variable precipitation cycles have a serious impact on systems essential for human livelihood, including water and other natural resources, food security and health. Floods are becoming a more pronounced disaster in Uganda. (Goretti, 2013). Floods struck in many parts of the suburbs of Kampala, Uganda on Tuesday 3rd September 2013 and the worst affected areas were Nateete, Bwaise, Kalerwe, Kireka, Katwe and

References.

References

۰.

nakkomojoan00@gmail.com

Christopher, M. J., 2013. Municipal Waste water Mangement in Kawempe Division, s.l.: Tampere auniversity of advanced science.

Council, N. R., 2007. Elevation data for flood plain mapping, s.l., National Academic Press.

Katukiza, 2010. Assesment of slum vulnerabilities in Uganda, Kampala: Daily monitor.

Mubiru, P., 2011. Examining poor drainange in Bwaise II parish, Kawempe.

Namagembe, L., 2018. Daily Monitor, Uganda: Daily Monitor.

Tekamoto, 2011. Moving towards climate smarts flood management in Bangkok and Tokyo, Germany: Massachusetts Institute of Technology.

+256782247964