

FACULTY OF ENGINEERING DEPARTMENT OF MINING & WATER RESOURCES ENGINEERING B.SC. WATER RESOURCES ENGINEERING FINAL YEAR PROJECT REPORT

Application of GIS in Modeling Groundwater Vulnerability to Contamination Case Study; Namanve in Kira-Goma sub county

Submitted by: Odoch Jimmy Raymond

BU/UP/2012/643

Email; jimmyraymond57@gmail.com Mobile; +256774757269/+256703409424

Supervisor: Mr. Oketcho Yoronimo Co-supervisor: Mr. Wangi Mario

A final year project report presented to the Busitema University in partial fulfillment for the requirements of Bachelor of science in Water Resources Engineering

May 2017

ABSTRACT

Ground water is the safest source of water and most relied on water source in most rural settings of Uganda. The potential for ground water contamination to occur is affected by the physical characteristics of the area, the chemical nature of the pollutant, the rate frequency and the method of application.

This Report presents a standardized system which incorporates physical characteristics of any area into a methodology which can be used to evaluate the ground water pollution potential of any hydrogeologic setting.

The system has been designed to use existing information which is available from a variety of sources. Information on the parameters including the depth to water in an area, net recharge, aquifer media, soil media, general topography or slope, vadose zone media, and hydraulic conductivity of the aquifer is necessary to evaluate the ground water pollution potential of any area.

This report entails the way in which a multi-criteria approach of weighting factors ways applied and Rating and Ranking which were used to come up with the Groundwater Vulnerability map of Kira and Goma sub counties where Namanve lies. Final outcome discussed in this report is the vulnerability map of Kira-Goma sub counties

DECLARATION

I ODOCH JIMMY RAYMOND hereby declare that all the information in this report is from my tireless work.

Signature	01
	Gett

Date 30th/ may 12017

BUSITEMA UNIVERSITY LIBRARY
CLASS No.
ACCESS NO. PEL 0221

iii | Page

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks and great gratitude to my lecturers more so my Supervisors Mr. Oketcho Yoronimo and Mr. Wangi Mario for their tireless support in my Academic Work.

I wouldn't want to forget my friends and colleagues Mr. Obira Daniel and Mr. Twine Martin for their contribution in my academics.

Thanks so much for the support friends.

vi Page

ACRONYMS

NRC	National Research Council
NEMA	National Environmental Management Authority
DRWM	Directorate of Water Resources Management
UNMA	Uganda National Meteorological Authority
UIA	Uganda Investment Authority
DGSM	Directorate of Geological surveys and Mines
NEAP	National Environmental Action Plan
MCE	Multiple-Criteria Evaluation
DEM	Digital Elevation Model
UTM	Universal Transverse Mercator
SŴL	Static Water Level
S/C	Sub-County
DTB	Depth to Bedrock
DWD	Directorate of Water Development
WHO	World Health Organisation
NGWDB	National Groundwater Database
ETo	Evapotranspiration
Eff.	Effective

vii[Page

63

LIST OF FIGURES

τ

.

4.4

ř,

r)

Figure 1 Shows sources of Groundwater pollution (adapted from the groundwater	
foundation)	7
Figure 2 Shows Boreholes in Namanve	
Figure 3 A Rainfall-Eto Relationship Chart of Kampala	. 19
Figure 4 Evapotranspiration computations using CROPWAT	19
Figure 5 Kira-Goma Topographic Map	
Figure 6 Shows flow Chart of Point data sets Processing	
Figure 7 shows flow chart of the model for Objective Two	
Figure 8 Shows An overlay of DRASTIC thematic Maps	
Figure 9 Shows Results of Net-Recharge/Effective Rainfall Computations For Kampa	ila –
Figure 7 Shows Results of Net-Recharge/Effective Raman Computations For Rampa	ua -
station	30
station Figure 10 Results of Objective Two (Thematic Maps)	30 31
station Figure 10 Results of Objective Two (Thematic Maps) Figure 11 show two maps of Depth to water table	30 31 32
station Figure 10 Results of Objective Two (Thematic Maps)	30 31 32
station Figure 10 Results of Objective Two (Thematic Maps) Figure 11 show two maps of Depth to water table	30 31 32 33
station Figure 10 Results of Objective Two (Thematic Maps) Figure 11 show two maps of Depth to water table Figure 12 Shows Net Recharge Maps	30 31 32 33 35
station Figure 10 Results of Objective Two (Thematic Maps) Figure 11 show two maps of Depth to water table Figure 12 Shows Net Recharge Maps Figure 13 Shows Aquifer Media Maps	30 31 32 33 35 36
station Figure 10 Results of Objective Two (Thematic Maps) Figure 11 show two maps of Depth to water table Figure 12 Shows Net Recharge Maps Figure 13 Shows Aquifer Media Maps Figure 14 Shows Soil two Maps of Kira-Goma	30 31 32 33 35 36 37
station Figure 10 Results of Objective Two (Thematic Maps) Figure 11 show two maps of Depth to water table Figure 12 Shows Net Recharge Maps Figure 13 Shows Aquifer Media Maps Figure 14 Shows Soil two Maps of Kira-Goma Figure 15 Shows Topographical Maps	30 31 32 33 35 36 37 38

.

LIST OF TABLES

Table 1 Showing Boreholes in Namanve area	
Table 2 Shows Data types, data features and sources	
Table 3 Assigned Weights for DRASTIC Features	
Table 4 Ranges and Ratings for Depth to Water	
Table 5 Ranges and Ratings for Net Recharge	
Table 6 Ranges and Ratings for Aquifer Media	
Table 7 Ranges and Ratings for Soil Media	
Table 8 Ranges and Ratings for Topography	
Table 9 Show FAO Hydraulic conductivities of different soil types	
Table 10 Net Recharge / Effective Rainfall Values for Namulonge Station	
Table 11 International DRSATIC colour code	

Į,

...

TABLE OF CONTENT

5

7

913

Table of Contents

ABSTRACTii
DECLARATION
ÀPPROVAL
DEDICATION
ACKNOWLEDGEMENTS
ACRONYMS
LIST OF TABLES
TABLE OF CONTENT
Chapter 1 INTRODUCTION
1.1 BACKGROUND
1.2 PROBLEM STATEMENT
1.3 JUSTIFICATION
1.4 Motivations
1.5 Objectives and Scope
1.5.1 Main objectives
1.5.2 Specific Objectives
1.5.3 Scope:
Chapter 2 Literature Review
2.1 Groundwater
2.1.1 Groundwater Quality
2.1.2 Groundwater contamination
2.1.3 POTENTIAL SOURCES OF GROUNDWATER CONTAMINATION 5

x Page

2.2 Groundwater Vulnerability	7
2.2.1 Groundwater vulnerability assessment methods	7
Chapter 2	
Methodology	11
Study Area	
2.2.2 Location	ÍÍ
Methodology	12
The Geology of Namanve	13
GROUNDWATER RECHARGE	
2.2.3 The DRASTIC Model	16
2.3 Methodology for Objective One	16
2.3.1 Data acquisition	16
2.3.2 spatial data development for GIS analysis	
Data processing	17
Case 2: conversion of Coordinate systems	
2.4 Methodology for Objective Two	20
2.4.1 Generation of thematic maps of different DRASTIC factors	20
DRASTIC	20
Depth to water table	21
2.4.2 Aquifer media	22
2.4.3 Soil Media	23
2.4.4 DRASTIC index vulnerability	
2.4.5 Methodology for Objective Three	29
Chapter 3	30

xi]Page

r

.7

4.

÷

49

3.1 A	ANALYSIS, FINDINGS AND DISCUSSION OF RESULTS	30
3.1.1	Objective one Results	
3.1.2	Results of Objective Two	31
3 <u>.</u> 2 C	Characterization of the DRASTIC Parameters	31
3.2.1	Depth to water Table	31
3.2.2	Net Recharge	32
3.2.3	Aquifer media	34
3.2.4	Soil media	35
3.2.5	Topography of Namanye area	37
3.2.6	Impact of Vadose	
3.2.7	Hydraulic conductivity	39
3.3 C	bjective Three Result Discussions	40
3.3.1	Groundwater Vulnerability Map of Kira-Goma Sub county	40
3.4 C	Conclusions and Recommendations	42
3.4.1	Conclusions	42
3.4.2	Recommendations	42
References	······································	43
Appendix		45

xii | Page

.

£

¥.

 ${}^{a}:$

57

Chapter 1

INTRODUCTION

This chapter contains the background of the problem, the problem statement, objectivists, scope and justification of the research proposal.

1.1 BACKGROUND

About 1.1 billion people throughout the world lack access to clean drinking water. Serious health conditions can be the result from consumption of contaminated water. By the year 2015, one of the UN MDGs is to half the proportion of people without sustainable access to sanitation and safe drinking water (Moulodi and Thorsell, 2013)

Groundwater being most readily available water in terms of its distribution and the safest drinking water source due to natural purification mode would be the source of this clean drinking water. But this would be portable water source is under threat of contamination due to due to the rapid developments, heavy industrialization, use of Pesticides and fertilizers in agriculture in many parts of the world,

Groundwater pollution is mainly due to the process of industrialization and urbanization that has progressively developed over time without any regard for environmental consequences(Akinbile, Yusoff and Area, 2011)

The main sources of contamination are traffic, industrial wastewater disposal, effluent and unsorted wastes that have been dumped on the soil and this leaches into soils and is expected to eventually enter the shallow groundwater aquifers. The polluted soil would be another source of contamination, but a longer term problem since it takes more time for the pollutants to be transported to the groundwater (Larsson & Ljung, 2002).

In the past two or three decades, rapid urbanization across Africa has led to the growth of large areas of unplanned sub-standard housing in most cities. Residents of such areas usually resort to groundwater as a source of inexpensive, high-quality domestic water supply. However, the uncontrolled expansion of this kind of housing, together with increasing sewage and effluent leakage, indiscriminate waste disposal, and uncontrolled industrial and $11P = g \epsilon$

References

Akinbile, C. O., Yusoff, M. S. and Area, A. S. (2011) 'Environmental Impact of Leachate Pollution on Groundwater Supplies in Akure, Nigeria', 2(1).

Aller, L., Lehr, J. H. and Petty, R. (1987) 'A Standardized System to Evaluate GroundWater Pollution Potential Using Hydrogeologic Settings', National Water WellAssociation,p.20.Availableat:http://rdn.bc.ca/cms/wpattachments/wpID3175atID5999.pdf.

'Aller et la.pdf' (no date).

Armando J. Carbonell, N. R. C. (1993) 'Groundwater Vulnerability Assessment; Predicting Eraltive contamination potential under conditions of uncertainity'.

Custodio, E. (no date) 'Trends in groundwater pollution : Loss of groundwater quality & related services Groundwater Governance - A Global Framework for Action', *Thematic Paper*.

John, M. A. K. (2004) 'REPUBLIC OF UGANDA UGANDA INVESTMENT AUTHORITY PROPOSED SECOND UGANDA PRIVATE ENVIRONMENTAL AND SOCIAL MANAG MENT FRAMEWORK FOR KAMPALA INDUST IAL BUSINESS PARK (KIBP) AT NAMAN E'.

Kulabako, R. et al. (2005) A NALYSIS OF THE IMPACT OF ANTHROPOGENIC POLLUTION ON SHALLOW GROUNDWATER IN PERI - URBAN KAMPALA.

Lynn E.Johnson (2009) Geographical Information Systems in Water Resources Engineering.

Moulodi, S. and Thorsell, J. (2013) 'SELECTED TRACE METAL POLLUTANTS IN GROUNDWATER AND SOIL FROM PROTECTED SPRINGS IN PERI - URBAN K AMPALA, U GANDA'.

NWDR (2006) National Water Development Report: Uganda.

Personal, F. and Only, U. (2001) 'of Groundwater', (May).

Thomas, A., Conrad, J. and Munch, Z. (2006) 'Improved Methods for Aquifer 43 | Page Vulnerability Assessments and Protocols (AVAP) for Producing Vulnerability Maps, Taking Into Account Information on Soils Guidelines for Developing and Compiling Groundwater Vulnerability Maps Using GIS'.

Yongxin xu, B. U. (2006) 'GROUNDWATER POLLUTION IN AFRICA', UNEP.

Anon., 1962. Kampala Soils Map, 1:250,000. s.1.:s.n.

Anon., 1998. United Nations Industrial Development Organisation. s.l.:s.n.

Eggeling, 1936. Mean Annual. s.l.:s.n.

Larsson, L., 2002. s.l.: s.n.

Larsson & Ljung, 2002. s.l.: s.n.

Musisi, J., 1986. Assessment and Evaluation of Namanve Clay Deposits, Kampala: Geological Survey and Mines.

NRC, 1990. [Online].

UNIDO/UTNCTAD, 1998. United Nations Industrial Development Organisation. s.l.:s.n. Wikipedia, 2016. [Online].