

FACULTY OF ENGINEERING

DEPARTMENT OF MINING AND WATER RESOURCES ENGINEERING

Analysis of Non-Revenue Water A Case Study of NWSC – Jinja Area

MAGENI MORIS OMBWOROH BU/UG/2011/205 E-mail: magenimoris2@gmail.comTel: 0772151126 / 0713284725

MA UNIU

B

SUPERVISORS

MAIN SUPERVISOR: MR. MUYINGO EMMANU CO-SUPERVISOR: MRS. JAQUELINE ABBO

A final year project report submitted to the Department of Mining and Water Resources Engineering in partial fulfillment for the award of a Bachelor's Degree in Water Resources Engineering

MAY 2015

ABSTRACT

Uganda is called the pearl of Africa because it is well endowed with natural resources beautiful environment and abundant water covering about 18% of her surface area. With the increasing population and poor management of resources, stress has been put on these existing resources where by pollution of existing water sources both surface and ground water is increasing. This has put the cost of treating surface water for urban (municipal) water supply very high therefore for effective and sustainable use of treated water; there is need for proper infrastructure management.

Municipal water supply systems in Uganda and other developing countries are faced with problems of aging infrastructure and high amounts of NRW which affect the financial viability of the systems and intermittent water supply situations some of which run for weeks therefore, every water utility company need to carry out an assessment of NRW to step up the efforts in fighting it and increasing on the efficiency of the system operation. This research focused on identifying the causes of high amounts of NRW and identifying the suitable counter strategy measures for fighting these high losses.

÷.

Chapter one consists of the background, problem statement, justification, purpose of the study research questions, objective and scope of the research; this is where the importance of this research is elicited. Chapter two consists of the relevant literature of this research, all the literature about NRW management using various methods are mentioned in a simplified form, it is recommended for systems which have no or local NRW reduction strategies. Chapter three consists of the methodologies that were used by the researcher to come out with the findings which include interviewing, observation and document review to achieve the objectives. Chapter four consists of the research findings that came out after the methodologies were carried out. Chapter five analyses the findings of the research and looks at the existing situation of the system. Chapter six has conclusions, recommendations challenges and future research that can be carried out. The recommendations were made by the researcher basing on the field findings and the existing situation, if implemented can help to reduce on the high amounts of NRW.

Page i

DECLARATION

I Mageni Moris Ombworoh Registration Number*BU/UG/2011/205* hereby declare that this work is an output of my efforts and has not been submitted to any institution of higher learning for the award of a degree, or any professional accolade.

Sign:
Date: 25#105/2015

BUSITEMA UNIVERSITY LIBRARY
CLASS No.:
ACCESS NO PET OJJ4

Page ii

11.

APPROVAL

I affirm to the best of my knowledge that Mageni Moris Ombworoh, registration number: BU/UG/2011/205 has tirelessly compiled this project report under my supervision, and it can be submitted to the University management for academic award.

Signature	Date
MR. MUYINGO EMMANUEL	
DEPARTMENT OF MINING AND WATER RESO	URCES ENGINEERING
BUSITEMA UNIVERSITY	
Signature	Date
MRS. JACQUELINE ABBO	
DEPARTMENT OF MINING AND WATER RESC	URCES ENGINEERING

BUSITEMA UNIVERSITY

52

ŝ.

ę•,

ACKNOWLEDGEMENT

I extend my sincere gratitude and thanks to the Almighty GOD, who gave me the knowledge, kept me healthy and protected me in all ways that I managed to come up with this research project report amidst all the challenges that I went through.

My humble appreciation also goes to my supervisors Mr. Muyingo Emmanuel and Mrs. JaquelineAbbo for their kind support and guidance they tirelessly rendered to me during the course of this research.

I also extend my sincere appreciation to the entire NWSC from the research manager at IREC Bugolobi, the general manager Jinja area, the Engineers Jinja area, the SNARP team and the entire staff of NWSC – Jinja area for being so hospitable and accepting to give me the information that has helped me so much to achieve the objectives of this research, may the Almighty Father in heaven reward them abundantly.

I extend further appreciation to my fellow students of Water Resources Engineering for the encouragement and help in the literature searching over the internet and their prayers and comfort that I got from them especially Mr. Ogen Moses

I finally thank my family for the support they have given me during this time of project report writing; their prayers and encouragement are invaluable, may the almighty GOD reward them abundantly.

LIST OF ACRONYMS

ALC	4	Active leakage control
AWWA		American water works association
AZNP		Average Zone night pressure
AZP	·	Average Zone Point
BABE		Bursts and background estimates
CAPL	-	Current Annual Physical loss
CARL		Current annual real losses
DC		Direct Current
DMA	_	District Metered Area
ELL		Economic Level of Leakage
ESPB		Equivalent Service Pipe burst
GIS	-	Geographic Information System
GoU		Government of Uganda
GPRS		General Packet Radio Services
GSM	-	Global System for Mobile Communication
IDAMC		Internally Delegated Area Management Contract
ILI	.—	Infrastructure Leakage Index
IWA		International Water Association
LC		Local council
MAAPL		Minimum achievable annual physical loss
MDG	-	Millennium Development Goal
MNC	-	Minimum night consumption
MNF		Minimum Night Flosy
NDF	_	Night-to-day factor
NFT	-	Night flow test
NNF		Net night flow
NRW	<u>~</u>	Non-Revenue Water
NWSC		National Water and Sewerage Corporation
PACE	_	Performance Autonomy and Creativity Enhancement

~

f

۲,

ł,

ŧ

PMA		Pressure Management Area
		Programme
PRV		Pressure Reducing Valve
SCADA	·	Supervisory Control and Data Acquisition
SIM	_	Subscriber Identification Module
SNARP	-	Suppressed Accounts, Non-Revenue Water, Arrears Reduction
SWITCH	-	service coverage, water sales innovation teamwork customer care
		harnessing resources
TARL		Target Annual Real Loss
UARL	 -	Unavoidable annual real loss
US EPA	<i>└</i> ~	United States Environmental Protection Agency
USAID	·	United States Agency for International Development
USD		United States Dollar
w.s.p		When system is pressurized
WLTF		Water Loss Task Force

LIST OF FIGURES

Figure 1.1 Distribution of earth's water
Figure 2.2 Components of NRW
Figure 3.2 Leakage flow rate in relation to time,
Figure 4.2 Determining the economic level of leakage
Figure 5.2 International NRW assessment matrix
Figure 6.2 The economic level of NRW
Figure 7.2 Typical losses in a water supply system
Figure 8.2 The four principal methods to combat real losses
Figure 9.2 District metered areas27
Figure 10.2 Simplified view of pressure within a distribution system
Figure 11.2 Flow chart for infrastructure asset management
Figure 12.2 Components of apparent losses
Figure 13.4 Some leakages which took long to be repaired
Figure 14.4 Old Service connections
Figure 14.4 Old Service connections
Figure 15.4 Week points on a service connection
Figure 15.4 Week points on a service connection
Figure 15.4 Week points on a service connection 67 Figure 16.4 Spaghetti connections 68 Figure 17.4 Poorly disconnection service pipe on a site 68 Figure 18.4 Meter reversing and adaptors which is easily opened 69 Figure 19.4 Old meters 70
Figure 15.4 Week points on a service connection 67 Figure 16.4 Spaghetti connections 68 Figure 17.4 Poorly disconnection service pipe on a site 68 Figure 18.4 Meter reversing and adaptors which is easily opened 69 Figure 19.4 Old meters 70 Figure 20.4 Vertically installed meters 70
Figure 15.4 Week points on a service connection67Figure 16.4 Spaghetti connections68Figure 17.4 Poorly disconnection service pipe on a site68Figure 18.4 Meter reversing and adaptors which is easily opened69Figure 19.4 Old meters70Figure 20.4 Vertically installed meters70Figure 21.4 New connection installed with an old meter (Socam 1996)71
Figure 15.4 Week points on a service connection67Figure 16.4 Spaghetti connections68Figure 17.4 Poorly disconnection service pipe on a site68Figure 18.4 Meter reversing and adaptors which is easily opened69Figure 19.4 Old meters70Figure 20.4 Vertically installed meters70Figure 21.4 New connection installed with an old meter (Socam 1996)71Figure 22.4 Staffs using un metered water72
Figure 15.4 Week points on a service connection67Figure 16.4 Spaghetti connections68Figure 17.4 Poorly disconnection service pipe on a site68Figure 18.4 Meter reversing and adaptors which is easily opened69Figure 19.4 Old meters70Figure 20.4 Vertically installed meters70Figure 21.4 New connection installed with an old meter (Socam 1996)71Figure 23.4 Staffs using un metered water72Figure 23.4 Capacity utilization vs NRW77
Figure 15.4 Week points on a service connection67Figure 16.4 Spaghetti connections68Figure 17.4 Poorly disconnection service pipe on a site68Figure 18.4 Meter reversing and adaptors which is easily opened69Figure 19.4 Old meters70Figure 20.4 Vertically installed meters70Figure 21.4 New connection installed with an old meter (Socam 1996)71Figure 23.4 Capacity utilization vs NRW77Figure 24.4 behaviors of defective meters78
Figure 15.4 Week points on a service connection67Figure 16.4 Spaghetti connections68Figure 17.4 Poorly disconnection service pipe on a site68Figure 18.4 Meter reversing and adaptors which is easily opened69Figure 19.4 Old meters70Figure 20.4 Vertically installed meters70Figure 21.4 New connection installed with an old meter (Socam 1996)71Figure 23.4 Staffs using un metered water72Figure 23.4 Capacity utilization vs NRW77

Page vii

1.01

÷

÷

LIST OF TABLES

Table 1.2 Water loss performance indicators	. 13
Table 2.2 commercial loss allowances for utilities in LAMIC	. 14
Table 3.2 Tasks and tools for developing a NRW reduction strategy	. 16
Table 4.2 Analysis of NRW actions	19
Table 5.2 Leak flow rate from a 6mm hole at different pressures	31
Table 6.2 Benefits of Pressure management	35
Table 7.3 Schedule of interviews	. 58
Table 8.3 Schedule of field trips that were carried out	. 59
Table 9.4 Performance improvement programs under SWITCH	62
Table 10.4 Themes that emerged from interviews	. 63
Table 11.4 Key issues that were mentioned in interviews	64
Table 12.4 The coding for physical losses.	73
Table 13.4 The coding for Commercial losses	73

\$1.

TABLE OF CONTENTS

ABSTRACT	i
DECLARATION	ii
APPROVAL	j iji
ACKNOWLEDGEMENT	iv
LIST OF ACRONYMS	v
LIST OF FIGURES	vii
LIST OF TABLES	viii
CHAPTER I: INTRODUCTION	1
1.0 Introduction	1
1.1 Background	2
1.2 Problem statement	3
1.3 Justificățion	4
1.4 Purpose of the study	.5.
1.5 Research Questions	5
1.6 Objectives of the project	5
1.6.1 Main objective	5
1.6.2 Specific objectives	.5
1.7 Scope of the study	6
CHAPTER IILITERATURE REVIEW	7
2.0 Introduction	7
2.1 Study Area	7
2.2 NRW Components and Indicators	.7
2.2.1 Physical Losses:	9
2.2.2 Infrastructure leakage index	10
2.2.3 Defining the economic level of leakage	11
2.3 Initial NRW assessment	12
2.3.1 Water audit	12
2.3.2 Development of a tool for initial NRW Assessment	14
2:3.2 Establishing the strategy development team	16
2.3.3 Importance of setting up appropriate NRW reduction strategies	17
2.3.4 Identifying the economic level of NRW	17

.

i,

2.3.5 Prioritizing NRW reduction components	18
2.3.6 Budget considerations for the implementation of the strategy	19
2.3.7 Raising awareness on the strategy	19
2.3.8 Gaining high level of approval	20
2.3.9 Building staff awareness and consensus	20
2.3.10 Reaching out to customers	21
2.4 Developing a leakage management strategy	22
2.4.1 Scheduling interventions	22
2.4.2 Choosing appropriate intervention methods	23
2.4.3 The four central intervention methods to combat real water losses	23
2.5 District metered area (DMA)	26
2.5.1 Definition and purpose of DMA	26
2.5.2 DMA design	2,8
2.5.3 Operation and management	2,8
2.5.4 Determining the level of leakage	28
2.5.5 Eliminating the backlog of undetected leaks	29
2.5.6 Implementing and maintaining routine operations	29
2.5.7 Checking pressure management capability	30.
2.6 Pressure management	30
2.6.1 Definition and purpose of pressure management	.30
2.6.2 Modulation concepts	32
2.6.3 Modulation location	32
2.6.4 Modulation type	32
2.6.5Types of pressure regulating valves (PRVs)	33
2.6.6Limitations of pressure management	.34
2.6.7Benefits of pressure management	34.
2.7 Leak repair	35
2.7.1 Purpose	35
2.7.2 Organizational issues and operating procedures	36
2.7.3 Execution of repair works	36
2.8 Infrastructure management	37
2.8.1 General overview	37

<u>.</u>.....

.

ŧ

2.8.2 Factors contributing to the deterioration of utility infrastructure	38
2.8.3 Data integration and decision-making	41
2.9 Commercial losses (Apparent losses)	42
2.9.1 How to address customer meter inaccuracies	44
2.9.2 Addressing meter tampering	46
2.9.3 Unauthorized consumption	46
2.9.4 Meter reading errors	48
2.9.5 Data handling and accounting errors	4.8
CHAPTER III:METHODOLOGY	49
3.1 Introduction	49
3.1.1 Types of Methodology	49
3.1.2 Literature Review (desk study)	50
3.1.3 Fieldwork	50
3.2 Data collection	51.
3.2.1 Collection of primary data	51
3.2.2 Collection of secondary data	52
3.3 The chosen Methodology	52
3,3.1 Observation Method	53
3.3.2 Interview Method	53
3.3.3 Documents Review (Data Review)	55
3.3.4 Why the chosen Methodologies.	55
3.4Preparation for field work	56
3.4.1 Introduction	56
3.4.2 Contacts	56
3.5 Field work at NWSC – Jinja	56
3.5/1 Study area	56
3.5.2 Data collection methods	57
CHAPTER IV: RESEARCH FINDINGS	60
4.0Introduction	60
4.1 Document review	60
4.2 Interviews	63
4.3 Participant observation	65

....

Page xi

4.3.1 Physical losses	66
4.3.2 Apparent losses	68
4.4.Summary of the findings	72
4.4.2 Summary of participant observations	73
4.5 Analysis of research findings	74
4.5.1Introduction	74
4.5.2Real Losses	75
4.5.3Apparent Losses	76
4.5.4Summary of the analysis	7.8
CHAPTER V: CONCLUSIONS AND RECOMMENDATIONS	80
5.1 Conclusions	80
5.1.1 Assessment of the Research Questions in the Light of the Research Findings	80
5.1.2 Objectives of the research	82
5.1.3 Infrastructure management	83
5.1.4 Final conclusion	83
5.2 Recommendations	84
5.2.1 To the management	84
5,2,2 Clean and standard system	84
5.2.3 Measurements of NRW	86
5.2.4 A holistic Approach	86
5.4.5 Formation of water user committees	87
5.2.6Technology transfer and training	87
5.2.7Prioritization of activities to be carried out	87
5.2.8The strategies and programs currently being developed by management.	88
5.3 Challenges	89
5.4 Euture research:	89
5.5 References	8 <u>9</u>
APPENDICES	93
Appendix A: Field pictures	93
Appendix B: Residential meter installation guides	94
Appendix C: Tables of results	95
Table C1: Capacity utilization visa vee NRW	95

Page xil

Table C2: Results of sampled meters	95
Table C3: Performance of PIPs	96
Appendix D: Meter installation	97
Figure D1: 20 mm to 50 mm light duty meters	97
Figure D2: 50 mm to 300 mm heavy duty meters	98.
Appendix E: Management strategies	99
Table E1: Methods to combat NRW	99
Table E2: Determining the ELL	100
Table E3: Steps of an action plan	101
Appendix F: A satellite map of the study area	102
Appendix G: Permission letter	103

CHAPTER I: INTRODUCTION

1.0 Introduction

The distribution of water on the Earth's surface is extremely uneven. Only 3% of water on the earth's surface is fresh; the remaining 97% resides in the oceans. Of freshwater, 69% resides in glaciers, 30% underground, and less than 1% is located in lakes, rivers and swamps. Only one percent of the water on the Earth's surface is usable by humans, and 99% of the usable quantity is situated underground.

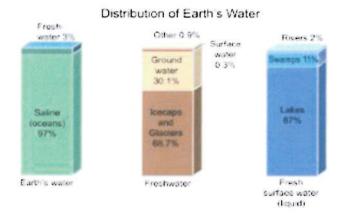


Figure 1.1 Distribution of earth's water

Uganda's fresh water resources are considered to be a key strategic resource, vital for sustaining life, promoting development and maintaining the environment. Uganda's rivers and lakes, including wetlands, cover about 18% of the total surface area of the country, with rainfall being the greatest contributor to the surface and ground water resources. (www.wikipedia.org/wiki/water supply and sanitation in Uganda)

According to the Ministry of Water and Environment (MWE) 2014, the urban population in the 198 urban councils in Uganda is estimated at 6.55 million. These towns comprise of 66 urban councils served with piped water by the National Water and Sewerage Corporation, (population 4.32 million), and 132 Small Towns under the Ministry of Water and Environment/Directorate of Water Development (77 of which are served with piped water), with a population of about 2.23 million. During this FY 2013/14, 38 towns were transferred from DWD to NWSC for operations and management.

- In the existing DMAs, average zone points (AZP) should be established with pressure measurement provisions to enable pressure measurements to be carried out and analyzed.
- A clear record of system pressures should be kept for daily monitoring of pressures and also a pressure management system should be installed because basing on document review, it indicated that as much water is pumped into the system, much is lost meaning the network is aging and needs pressure management.
- > The whole system should be updated in GIS maps so that leak detection can be done effectively and all staffs should be trained in map reading
- All meters that are installed vertically should be changed to horizontal installation (refer to appendix C)

5.3 Challenges

- Company policy of restricting accessibility of data like monthly billing reports, leakage reports hindered a standard analysis of the research.
- Lack of information such as books from IWA publishers where the researcher only accessed a few of them,
- Lack of funds to facilitate the researcher in accommodation, feeding and transport to the office, this made the field work to be cut short before enough data was collected,

5.4 Future research:

Data based analysis (analysis of NRW based on long term data from billing, DMA and water works)

Potential of pressure management in NWSC - Jinja Area water supply system

Effective infrastructure management of the system as regards expansion versus NRW management and rehabilitation (meters and mains replacements)

5.5 References

Alegre H., Hirner W., Baptista J.M. and Parena R. (2000) *Performance Indicators for Water* Supply Services: IWA Manual of Best Practice

Page 89

C. R. Kothari, 2004. Research methodology (methods and techniques) New Age International (P), Publishers

Collins English dictionary complete and unabridged HarperCollins publishers 2003

Cromwell, J., Reynolds, H. and Young, K., Costs of Infrastructure Failure. AWWA RF and AWWA, Denver, Colorado, USA, 2002.

Farley Malcom and Trow Stuart (2003). *Losses in Water Distribution Networks*. A Practitioner's Guide to Assessment, Monitoring and Control JWA London, UK.

Hartley, D., Acoustics Paper. Proceedings of the 5th IWA Water Loss Reduction Specialist Conference, Cape Town, South Africa, 2009.

Kingdom, B., R.Liemberger and P.Marin, 2006. "The Challenge of Reducing Non-Revenue Water in Developing Countries—How the Private Sector Can Help: A Look at Performance-Based Service Contracting". World Bank, Paper No. 8, Dec 2006

Kober E. and Gangl G., 2009*New Monitoring Methodology for Water Distribution Systems*. Proceedings of the 5th IWA Water Loss Reduction Specialist Conference, Cape Town, South Africa, 2009.

Kumar Ranjit (1999). *Research Methodology*. *A step-By-step Guide for Beginners*. Sage Publications London, UK.

Lambert, A. O. and Hirner, W.,2000 Losses from Water Supply Systems: StandardTerminology and Recommended Performance Measures. International Water Association.

Lambert, A. O. and McKenzie R. D., 2002*Practical Experience in using theInfrastructure Leakage Index*.in Proceedings of the IWA Specialized Conference 'LeakageManagement - A Practical Approach' Lemesos; Cyprus.

Lambert, A. O., and Fantozzi, M., *Recent Developments in Pressure Management*. Proceedings of the IWA International Specialized Conference 'Water Loss 2010', São Paulo, Brazil, 2010