BUSITEMA UNIVERSITY

FACULTY OF NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES DEPARTMENT OF GEO-INFORMATION, EARTH OBSERVATION AND PHYSICAL LAND RESOURCES.

IMPACTS OF CLIMATE CHANGE ON AQUACULTIRE (POND CULTURE), A CASE STUDY OF SAMIA BUGWE NORTH CONSTITUENCY.

BY ERUMBI GLORIA OUMA

BU/UP/2016/267

A RESEARCH REPORT SUBMITTED IN PARTIAL FULLFILMENT OF THE REQUIREMENT FOR THE AWARD OF A DEGREE IN BACHELORS OF SCIENCE IN FISHERIES AND WATER RESOURCE MANAGEMENT OF BUSITEMA UNIVERSITY.

June 2019

DECLARATION

I ERUMBI GLORIA OUMA, declare that this research report submitted to the Faculty of Natural Resource and Environmental Sciences is my original work and to the best of my knowledge, it has not been submitted by any other person to any institution for the award of a degree in Bachelor of Science in Fisheries and water resource management.

Signature. Gtooly

ERUMBI GLORIA OUMA

BU/UP/2016/267

Date 23 106 12019

APPROVAL

This is to certify that this research report titled "Impacts of climate change on aquaculture (pond culture) in Samia Bugwe North constituency" is the original work for ERUMBI GLORIA OUMA and it has been done under my supervision.

Signature. MS GIMBO REBBECA

DATE 25, 06, 2019

SUPERVISOR

DEDICATION

I would like to dedicate this research report to my parents (Mr. Ouma Patrick Okiya and Mrs. NambudyeWinnefred) and brothers such as Eugen, Jovan, Joseph and Neavy for their great support towards my studies.

I would also like to dedicate this report to my friends who have been giving me all sorts of support be it advices, finances, and material support that I wanted from them and my God bless them abundantly.

.

ACKNOWLEDGMENT

By God's grace things that seemed impossible to me, I was able to accomplish them easily therefore, Glory be to God.

I am highly indebted to several people for their invaluable; moral, material, financial support or otherwise, which has enabled me to achieve all this. To you all, I wish to express my utmost gratitude and sincere thanks.

In a very special way, I wish to acknowledge the invaluable guidance and tireless support rendered to me by my supervisor, MS GIMBO REBBECA, right from the time of writing the proposal up to completion of this study. Thank you very much for your good contributions, and being available whenever I needed your guidance.

I will not forget to acknowledge my dearly parents (Mr. Ouma Patrick Okiya and Mrs. NambudyeWinnefred) for the great support that she has rendered towards my success in academics.

Finally, I acknowledge, all my course mates, lectures, the non-teaching staff of Busitema University and everyone who contributed in one way or the other towards achieving my academic success, May the almighty God reward you accordingly.

iv.

LIST OF ACRONYMS/ABBREVIATIONS

AU	African Union
CDO	Chief District Officers
DFID	Department For International Development
DFR	Department of Fisheries Resources.
FAO	Food and Agricultural Organization
FRI	Fisheries Research Institute
IPCC	Intergovernmental Panel on Climate Change
LC	Local Council
MAAIF	Ministry of Agriculture, Animal Industry and Fisheries
NAFIRRI	National Fisheries Resource Research Institute
NARO	National Agricultural Research Organization
NEMA	National Environmental Management Authority
NFA	National Forestry Authority
SPSS	Statistical Package for the Social sciences
UN	United Nations
UNDP	United Nations Development Programmes
USD	United States Dollar

LIST OF FIGURES

Figure 1: Showing the conceptual framework
Figure 2: Showing a map of the study area12
Figure 3: Pie chart showing the gender of the respondents 15
Figure 4: Bar graph showing the age of the respondents
Figure 5: Pie chart showing education level for respondents 17
Figure 6: Pie chart showing the occupation of the respondent 17
Figure 7: Bar graph showing the respondent's engagement in fish farming
Figure 8: Bar graph showing the duration of fish farming
Figure 9: Bar graph showing the number of ponds owned by the respondents
Figure 10: Pie chart showing the sources of water
Figure 11: Bar graph showing the respondent's specialization
Figure 12: Pie-chart showing the challenges faced by the respondents
Figure 13: Bar graph showing the solutions to the challenges faced by fish farmers
Figure 14: Bar graph showing the respondents' view towards climate change affecting fish farming
Figure 15: Pie-chart showing how climate change affects fish farming
Figure 16: Bar graph showing the most affected season by the changing climate
Figure 17: Bar graph showing the most affected months by the changing climate
Figure 18: Pie-chart showing the mitigation of climate change by fish farmers
Figure 19: Bar graph showing the mitigation of climate change by the community
Figure 20: Pie-chart showing the mitigation of climate change by the government

LIST OF TABLES

Table 1: Showing the production of fish per cycle by most farms on average	21
Table 2: Showing respondents' awareness of climate change	23
Table 3: Showing the production of fish in wet season by most farms on average	26
Table 4: Showing the production of fish in dry season by individual farms	26

DECLARATIONi		
APPROVALii		
DEDICATIONiii		
ACKNOWLEDGMENTiv		
LIST OF ACRONYMS/ABBREVIATIONS		
LIST OF FIGURES		
LIST OF TABLESvii		
ABSTRACTxi		
CHAPTER ONE: INTRODUCTION		
1.0 INTRODUCTION		
1.1 Background of the study1		
1.2 Problem statement		
1.3 Major objective		
1.4 Specific objectives		
1.5 Research questions		
1.6 Significance of the study4		
1.7 Conceptual frame work		
1.8 Scope of study		
1.9 Time scope		
CHAPTER TWO: LITERATURE REVIEW		
2.0 Introduction		
2.1 The global aquaculture		
2.2 Aquaculture in Uganda7		
2.3 Overview of climate change		
2.4 impacts of climate change on aquaculture in general10		
2.5 Climate change and pond culture		
2.6 Climate change and cage culture. 11		
CHAPTER THREE: METHODOLOGY		
3.1 Description of the study area		
3.2 Geographical scope		

Table of Contents

3.3 Study population12
3.4 Sample size and sample selection13
3.5 Research design
3.6 Validity and reliability
3.7 Ethical considerations
3.8 Data collection tools and methods13
3.9 Data analysis techniques
3.10 Limitations and delimitations of the study14
CHAPTER FOUR: PRESENTATION AND DISCUSSION OF THE FINDINGS15
4.0 Introduction
4.1 Demographic information about respondents15
4.1.1 Gender of respondents15
4.1.2 The age of the respondents16
4.1.3 Education levels
4.1.4: Occupation
4.2: Basic information about fish farming Engagement in fish farming17
4.2.2: Duration of fish farming18
4.2.3: Number of ponds
4.2.4 Sources of water
4.2.5 Specialization
4.2.6 Fish production per cycle
4.2.7 Challenges faced
4.2.8 Solutions to the challenges
4.3 Effects of climate change23
4.3.1 Climate change awareness
4.3.2 Climate change affecting fish farming
4.3.3 How climate change affects fish farming
4.4 Fish production in dry and wet season25
4.4.1 Season when farmers are mostly affected by climate change
4.4.2 Farm's fish output

ABSTRACT

Climate change is an additional pressure on top of the many other aquaculture pressures, which fish stocks already experience. The impact of climate change was evaluated in the context of other anthropogenic pressures on pond culture. Factors that can shape climate are climate changes. These include such processes as variations in solar radiation, deviations in the earth's orbit, mountain building and continental drift, and changes in greenhouse gas concentrations.

The study used both qualitative and quantitative approach to collect data, analyze and present it. The methods of data collection used were interviews, questionnaires and field observations. The data was collected from a sample of seventy respondents, which include 61 males and 9 females. Data was processed in excel and later transported in SPSS for analysis, which included the drawing of pie charts, bar graphs and tables used to analyze the different variables.

From the study, fish farmers are facing a big problem of prolonged seasons of drought, which comes along with the climate changing. For aquaculture to take place, the key factor to consider is the source of water but due to the prolonged droughts the sources of water are drying up and most of the farms are putting their businesses to a standstill.

The fish farmers should ensure that they find alternative water sources, stock the fish in time and if possible stock quick maturing fish so as to adapt to the changing climate.

Xİ

CHAPTER ONE: INTRODUCTION

1.0 INTRODUCTION

This chapter introduces the topic, the background of the study, the problem statement to the study, objectives, research questions to the study, significance of the study and the conceptual framework.

1.1 Background of the study.

Aquaculture is the science, art and business of farming or cultivating fish under controlled conditions. For statistical reasons, FAO defines aquaculture as "the farming of aquatic organisms, including fish, crustaceans, molluscs and aquatic plants" in Halwart et al (2000). Aquaculture has been referred to as "alternative agriculture" but this does not suggest that it is a new activity. The farming and husbandry of fresh water and marine organisms has been practiced for centuries. Oyster culture in ancient Rome and Carp reared in ponds in China during the 5th century B.C has been documented, Dan (2001).

Global aquaculture production (including aquatic plants) in 2016 was 110.2 million tonnes, with the first-sale value estimated at USD 243,5 billion. The first-sale value, re-estimated with newly available information for some major producing countries, is considerably higher than previous estimates. The total production included 80.0 million tonnes of food fish (USD 231.6 billion) and 30.1 million tonnes of aquatic plants (USD 11.7 billion) as well as 37 900 tonnes of non-food products (USD 214.6 million). The contribution of aquaculture to the global production of capture fisheries and aquaculture combined has risen continuously, reaching 46.8 percent in 2016, up from 25.7 percent in 2000. With 5.8 percent annual growth rate during the period 2001–2016, aquaculture continues to grow faster than other major food production sectors, but it no longer enjoys the high annual growth rates experienced in the 1980s and 1990s. Also, the disparity in the level of sectoral development and uneven production distribution remain great among the countries within the regions and across the world.

In 2016, aquaculture was the source of 96.5 percent by volume of the total 31.2 million tonnes of wild-collected and cultivated aquatic plants combined. Global production of farmed aquatic plants, overwhelmingly dominated by seaweeds, grew in output volume from 13.5 million tonnes in 1995 to just over 30 million tonnes in 2016.

REFERENCES

K Brander, "Assessment of possible impacts of climate change on fisheries", Global Biogeochemical Cycles, 18, 2005.

L Bopp, P Monfray, O Aumont, J Dufresne, L Treut, H Madec, G Terray, L. Orr "Potential Impact of Climate Change on Marine Export Production". Berlin, 2001.

J.A Church, J.M Gregory, P. Huybrecths, M Kuhn, K Lambeck, "Changes in Sea Level," In Climate Change 2001. New York: Cambridge University Press, pp. 639-694, 2001.

K Cochrane, C De Young, D Soto, T Bahri,.. "Climate Change implications for fisheries and aquaculture": overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper No. 530.UNEP. 2009. The climate change fact sheet, 2009.

S Fankhauser,.. "Valuing Climate Change: The Economics of the Greenhouse". London: Earthscan Publications Ltd, 1995.

W Gregg, W Conkright, M. E., P O Ginoux, J Reilly N. W Casey, Ocean primary production and climate: Global decadal changes. Geophysical Research Letters, 30: 1809. 2003

C.D Harley,..., Hughes, R.A., Hultgren, K.M., Miner, B.G., Sorte, C.J. B., Thornber, C.S., Rodriguez, L.F., Tomanek, L. & Williams, S.L.. "The impacts of climate change in coastal marine systems". Ecol. Lett., 9: 228-241, 2006.

G Knapp, "Human Effects of Climate-Related Changes in Alaska Commercial Fisheries", Institute of Social and Economic Research, University of Alaska Anchorage, Anchorage, Alaska, 1998

IPCC, "Climate change 2007": the physical science basis (summary for policy makers), IPCC, 2007

R Nicholls, F Hoozemans, M. Marchand, "Increasing Flood Risk and Wetland Losses due to Global Sea-Level Rise: Regional and Global Analyses." Global Environmental Change 9: \$69-\$87, 1999.

J Richardson, D Schoeman.. "Climate Impact on Plankton Ecosystems in the Northeast Atlantic". Science, 305: 1609-1612, 2004.

Anyanwu CN, Amadi-Eke AS, Nwaka DE, Ezeafulukwe, CF, Adaka GS. Climate Change, Effects and Mitigation Strategies on Aquaculture: A Review. Agriculture, Forestry and Fisheries, 2015; 4(3-1):70-72. doi: 10.11648/j.aff.s.2015040301.22

Aphunu A, Nwabez GO. Fish farmers' perception of climate change impact on fish production in Delta State, Nigeria. Journal of Agricultural Extension. 2012; (16):16. Williams L, Rota A. Impact of climate change on fisheries and aquaculture in the developing world and opportunities for adaptation. Fisheries Thematic Paper: Tool for project design. 2015, 20.

OECD. The economics of adapting fisheries to climate change, OECD Publishing, 2010, 403. Dx:doi.org/10.1787/9789264090415.en.

AU (2014). The Round Table of African Ministers of Fisheries and Aquaculture. Introduction Remarks by H.E. Tumusiime Rhoda Peace. Addis Ababa, Ethiopia: Nepad.

Britz, P. J., & Rouhani, Q. A. (2004). Contribution of Aquaculture to Rural Livelihoods in South Africa: A Baseline Study. Water Research Commission, Grahamstown: Water Research Commission.

Curtis, M. J., & Howard, A. C. (1993). *Economics of aquaculture*. New York: Food Product Press.

Denne, T., Irvine, R., Atreya, N., & Robinson, M. (2007). Recycling: Cost Benefit Analysis. New Zealand: Ministry for the Environment.

FAO (1986). Report of the Expert Consultation on Small-Scale Rural Aquaculture. Fisheries and Aquaculture Department. Rome: Food and Agricultural Organization of the United Nations.

FAO (2002). Aquaculture development and management: status, issues and prospects. *COFLAQ/1/2002/2.* Rome: Food and Agricultural Organization of the United Nations.

FAO (2010). Securing Sustainable Small-Scale Fisheries: Bringing Together Responsible Fisheries and Social Development. APFIC/ FAO Regional Consultative Workshop, 2010/19,

1-56. Bangkok, Thailand: RAP Publication. Rome: Food and Agricultural Organization of the United Nations.

FAO (2012). The State of World Fisheries and Aquaculture. Rome: Food and Agricultural Organization of the United Nations.

FAO (2014). The State of World Fisheries and Aquaculture; Opportunities and Challenges. Rome: Food and Agriculture Organization of The United Nations.

Hecht, T. (2000). Considerations on African Aquaculture. World Aquaculture. 31: 12-19. World Aquaculture.

James, D., & Predo, C. (2015). Principles and Practise of Cost-Benefit Analysis. Cost-Benefit Studies of Natural Resource management in Southeast Asia. Springer. pp 11-46.

Kaliba, A. R., Ngugi, C. C., Mackambo, J., &Quagraini, K. K. (2007). Economic profitability of Nile Tilapia (Oreochromis niloticus L) production in Kenya. *Aquaculture Research* 38(11): 1129-1136.

Maina, J. G., Mbuthia, P. G., Ngugi, J., Omolo, B., Orina, P., Wangia, S. M., ... Owiti, G. O. (2014). Influence of Social-economic Factors, Gender and the Fish Farming Enterprise and Productivity Project on Fish Farming Practises in Kenya. *Livestock Research for Rural Development*.

Manyala, J. O. (2011, September 1). Fisheries Value Chain Analysis: Background Report Kenya. Kisumu, Kenya.

Mbugua, H. M. (2007). A Comparative Economic Evaluation of Farming of Three Important Aquaculture Species in Kenya, Reykjavik: United Nations Fisheries Training Programme, Final Project.