DEVELOPMENT OF UPDATED DESIGN NORMS FOR SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA

by

DANIEL OTIM

Submitted in partial fulfilment of the academic requirements of

Doctor of Philosophy

in Agricultural Engineering School of Engineering College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg South Africa

February 2020

PREFACE

The research contained in this thesis was completed by the candidate while based in the Discipline of Agricultural Engineering, School of Engineering of the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa. The research was financially supported by South African Sugarcane Research Institute.

The contents of this work have not been submitted in any form to another university and, except where the work of others is acknowledged in the text, the results reported are due to investigations by the candidate.

4

Signed: Professor JC Smithers Date: 6 May 2020

DECLARATION 1: PLAGIARISM

I, Daniel Otim, declare that:

- i. the research reported in this dissertation, except where otherwise indicated or acknowledged, is my original work;
- ii. this dissertation has not been submitted in full or in part for any degree or examination to any other university;
- iii. this dissertation does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons;
- iv. this dissertation does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:
 - (a) their words have been re-written but the general information attributed to them has been referenced;
 - (b) where their exact words have been used, their writing has been placed inside quotation marks, and referenced;
- v. where I have used material for which publications followed, I have indicated in detail my role in the work;
- vi. this thesis is primarily a collection of material, prepared by myself, published as journal articles or presented as a poster and oral presentations at conferences. In some cases, additional material has been included;
- vii. this dissertation does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the dissertation and in the References sections.

Signed: D Otim

Date: 6th May 2020

DECLARATION 2: PUBLICATIONS

My role in each paper and presentation is indicated. The * indicates corresponding author.

The following are the list of publications in this thesis:

Chapter 2

Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R. 2019b. Design norms for soil and water conservation structures in the sugar industry of South Africa. *Water SA* 45 (1): 29-40.

Chapter 3

Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R. 2019a. Assessment of trends in run-off and sediment yield from catchments under sugarcane production and management practices*. *International Sugar Journal* 121 (1443): 216-219.

Chapter 4

Otim, D*, Smithers, J, Senzanje, A and van Antwerpen, R. "In press". Verification of runoff volume, peak discharge and sediment yield simulated using the ACRU model for bare fallow and sugarcane fields. *Water SA* "In press".

Chapter 5

Otim, D*, Smithers, JC, Senzanje, A, van Antwerpen, R and Thornton-Dibb, SLC. "In press". Development and assessment of an updated tool for the design of soil and water conservation structures in the sugar industry of South Africa. *Agricultural Engineering International: CIGR Journal* "In press".

Chapter 6

Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R. "In press". Investigation of system design criteria for extreme events leading to most soil loss and the economic impact of varying design return periods. *Applied Engineering in Agriculture* "In press".

Chapter 7

Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R. "In press". Impacts of soil and water conservation structures on stream flow reduction in the sugar industry of South Africa. *Water SA* "In press".

The following papers were presented at national and international conferences:

- Otim, D*, Smithers, J, Senzanje, A. and van Antwerpen, R. 2019. Verification of runoff volume, peak discharge and sediment yield simulated using the ACRU model for bare fallow and sugarcane fields. In *Proc. of the Proceedings of the Annual Congress-South African Sugar Technologists' Association*, 77-81.
- Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R. 2018. Assessment of trends in rainfall and runoff at the La Mercy catchments under bare fallow conditions and sugarcane production. In: eds. Akdeniz, RC and Yaldiz, O, *CIGR 2018 XIX. World Congress of CIGR Program and Abstracts' Book*, 201. CIGR, Antalya, Turkey. 22 25 April, 2018.
- Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R. 2018. Verification of runoff volume and peak discharge from sugarcane fields simulated using the ACRU model. In: eds. Akdeniz, R and Yaldiz, O, CIGR 2018 XIX. World Congress of CIGR Program and Abstracts' Book, 46. CIGR, Antalya, Turkey. 22 – 25 April, 2018.
- Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R.2018. Assessment of trends in runoff and sediment yield from catchments under sugarcane production and management practices. *Proceedings of South Africa Sugar Technologists'cAssociation*, 98-102. SASTA, Durban, RSA. 14 – 16 August, 2018.

Otim, D*, Smithers, JC, Senzanje, A and van Antwerpen, R.2018. Assessment of trends in runoff, peak discharge and sediment yield from catchments under sugarcane production and management practices. South African Institute of Agricultural Engineers (SAIAE) Symposium and Biennial CPD Event. Durban North, South Africa. 17 – 20, September 2018.

In all the above papers and manuscripts, I reviewed, summarised and synthesised the literature and wrote the papers and manuscripts. My co-authors, Prof JC Smithers, Dr A Senzanje and Prof R van Antwerpen provided guidance and reviewed the papers and manuscripts.

Mr SLC Thornton-Dibb contributed to the manuscript in Chapter 5 by setting up and automating the Agricultural Catchments Research Unit (*ACRU*) model, thus enabling timely and speedy simulations.

Signed: D Otim Date: 6th May 2020

ABSTRACT

Sugarcane in South Africa is grown on wide-ranging soils, sometimes in non-ideal climates and on steep topographies where soils are vulnerable to erosion. A consequence of unsustainable soil loss is reduction in field production capacity. Sugarcane fields are protected against erosion through, inter alia, the use of engineered contour banks, waterways and spillover roads. A comparison of design norms in the National Soil Conservation Manual and norms used in the sugar industry clearly shows discrepancies (e.g. maximum slope and cover factor of sugarcane) that need to be investigated. Furthermore, the sugar industry design nomograph was developed based on an unsustainable soil loss limit, does not include any regional variations of climate and the impact on soil erosion and runoff and does not include vulnerability during break cropping. The aim of this research was to develop updated design norms for soil and water conservation structures in the sugar industry of South Africa. Many soil loss models exist, of which empirical models are the most robust and provide stable performances. The Modified Universal Soil Loss Equation (MUSLE) which is embedded in the Agricultural Catchments Research Unit (ACRU) model, estimates event-based soil erosion and, given that the majority of soil erosion occurs during a few extreme events annually, the design norms were updated using the MUSLE. The ACRU model is a daily time step, physicalconceptual agrohydrological model. Runoff volume, peak discharge and sediment yield were simulated with the ACRU model and verified against the respective observed data. The results showed good correlations and the ACRU model can be confidently applied in the development of updated design norms for soil and water conservation structures in the sugar industry of South Africa. The ACRU model was used to conduct simulations for the different practices in the sugar industry and the results used to build the updated tool for the design of soil and water conservation structures in the sugar industry of South Africa, using MS Access with a background database and a graphical user interface. The updated tool is robust, based on sustainable soil loss limits, includes regional variations of climate and their impact on soil erosion and runoff and also includes vulnerability during break cropping. It is more representative of conditions in the sugar industry of South Africa and therefore recommended for use in place of the current sugar industry design norms. The results also indicate that soil and water conservation structures result in insignificant reductions in stream flow and would not likely necessitate their declaration as Stream Flow Reduction (SFR) activities as contained in the National Water Act of South Africa. Consequently, a 20 year return period is

recommended for the design of soil and water conservation structures and the cost implication of varying design return periods from the minimum 10 year return period to the 20 year return period ranges from 16% to 35% across the four homogenous regions in the sugar industry of South Africa.

ACKNOWLEDGMENTS

I am highly indebted to South African Sugarcane Research Institute (SASRI) for funding this research. Without this funding it would not have been possible for me to pursue studies at the University of KwaZulu-Natal (UKZN).

I also wish to express my gratitude to the following persons and institutions for the support granted during this study:

- a) Prof JC Smithers, my supervisor, for the guidance, continuous support and positive energy during this study. Thank you.
- b) Dr A Senzanje and Prof R van Antwerpen, my co-supervisors for their endless support, input and advice.
- c) Prof RE Schulze for his expert opinions and guidance at the various stages.
- d) Mr N Davis for extracting and collating climatic data from the relevant data bases.
- e) Mr SLC Thornton-Dibb for his assistance in setting up and automating the Agricultural Catchments Research Unit (*ACRU*) model, thus enabling timely and speedy simulations.
- f) Mrs K Smithers for her assistance in reviewing and refining the algorithms embedded in the Contour Spacing Design Tool (CoSDT).
- g) Dr P Tweddle from SASRI for guidance in costing soil and water conservation structures.
- h) Ms I Thompson and Ms A Makhaye from SASRI and Mr D Wilkinson and Ms N Gumede from Noodsberg Cane Growers Association for provision of Land Use Plans for various areas in the sugar industry.
- i) UKZN for availing office space, internet access and stationary.
- My family and colleagues for the support and encouragement extended to me throughout this study.
- k) My parents, Dan and Kate Opito, for the support they have continued to give me in my pursuit of quality education.
- My wife, Josephine, and our two children for their love, patience and support, including the numerous sacrifices made while I accomplished my studies. I love you.

Above all, acknowledgement goes to God, my Heavenly Father for giving me the opportunity, knowledge, strength and wisdom to pursue my studies. All glory and honour is yours. Amen.

TABLE OF CONTENTS

PREFA	ACE		ii		
DECLARATION 1: PLAGIARISM iii					
DECL	ARATI	ION 2: PUBLICATIONS	iv		
ABST	RACT.		vii		
ACKN	OWLE	EDGMENTS	ix		
LIST (OF TAE	BLES	xvii		
LIST (OF FIG	URES	XX		
LIST (OF ACF	RONYMS	xxiv		
1	INTR	ODUCTION	1		
1	1 1	Deekaround	1		
	1.1	Background	1 2		
	1.2		2		
	1.5	Alm			
	1.4	Specific Objectives			
	1.5	Originality of the study			
	1.0	Duffine of thesis structure	4		
	1.7	References			
2	DESIC	JN NORMS FOR SOIL AND WATER CONSERVATION STRUCTURE	ES IN THE		
	SUGA	AR INDUSTRY OF SOUTH AFRICA	7		
	Abstra	nct	7		
	2.1	Introduction	8		
	2.2	Agronomic Practices in the Sugarcane Production System	11		
	2.3	 2.2.1 Land preparation 2.2.2 Planting 2.2.3 Weed, Pest and Disease Control 2.2.4 Harvesting Design for Soil and Water Conservation Structures 	11 11 12 12 12 13		
		2.3.1 Hydrologic design2.3.2 Hydraulic Design2.3.2.1 Contour bank design	13 16 16		

2.4	Models for Soil Erosion Estimation	24
2.5	Climate Change Impacts on Design Floods	
2.6	Discussion and Conclusions	
2.7	References	
ASSE	ESSMENT OF RELATIONSHIPS IN RUNOFF, PEAK DISCHARGE AN	١D
SEDI	MENT YIELD AT THE LA MERCY CATCHMENTS LOCATED IN SO	DUTH
AFRI	CA UNDER BAREFALLOW CONDITIONS AND SUGARCANE PRO	DUCTION 41
Abstra	act	41
3.1	Introduction	42
3.2	Impact of Management Practices on Hydrological Responses under Bard	e Fallow and
	Sugarcane Production Conditions	43
3.3	Impact of Land Use Practices on Sediment Yield under Bare Fallow and	Sugarcane
	Production Conditions	45
3.4	Data and Methods	45
	3.4.1 Study area	46
	3.4.2 Data	
3.5	3.4.3 Assessment of data relationships	50
	3.5.1 Rainfall consistency test	
	3.5.2 Daily runoff versus daily rainfall	
	3.5.3 Event rainfall versus event runoff	
	3.5.4 Daily neak discharge	
	3.5.4.1 Relationships between event peak discharge and event runoff	
	3.5.5 Event sediment yield	63
2.6	3.5.6 Relationships between accumulated sediment yield	
3.6	Conclusions	
3.7	Acknowledgements	71
3.8	References	71
3.9	Appendix 3.1: Inconsistent Rainfall and Runoff Data at the La Mercy Ca	atchments75
3.10	Appendix 3.2: Inconsistent Peak Discharge Data at the La Mercy Catchi	ments78
3.11	Appendix 3.3: Inconsistent Sediment Yield Events at the La Mercy Cate	hments under
	Sugarcane Cover Conditions	
VERI	FICATION OF RUNOFF VOLUME, PEAK DISCHARGE AND SEDIM	IENT YIELD
SIMU	JLATED USING THE ACRU MODEL FOR BARE FALLOW AND SUC	GARCANE
FIELI	DS	

4.1 Introduction	Abstr	act8	33					
4.2 Simulation of Stormflow Volume, Peak Discharge and sediment Yield in the ACRU Model	4.1	Introduction	34					
Model 85 4.2.1 Stormflow volume 86 4.2.2 Peak discharge 87 4.2.3 Sediment yield 88 4.3 Data and Methods 89 4.3.1 Study area 89 4.3.2 Data 91 4.3.3 Model verification and performance 92 4.3.3 Simulation and verification of daily runoff volume 93 4.3.3 Simulation and verification of daily peak discharge 93 4.3.3 Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of runoff volume 95 4.4.2 Verification of aily peak discharge 108 4.4.3 Verification of daily peak discharge 108 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.7 References 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Sediment Yield.119 4.10 Appendix 4.2: The MUSLE Parameters used in Final Verification at the La Mercy Catchments under Sugarcane Land Cover 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF <	4.2	4.2 Simulation of Stormflow Volume, Peak Discharge and sediment Yield in the <i>ACRU</i>						
4.2.1 Stormflow volume 86 4.2.2 Peak discharge 87 4.2.3 Sediment yield 88 4.3 Data and Methods 89 4.3.1 Study area 89 4.3.2 Data 91 4.3.3 Model verification and performance 92 4.3.3 Simulation and verification of daily runoff volume 93 4.3.3.2 Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of runoff volume 95 4.4.2 Verification of daily peak discharge 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 110 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOUL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods		Model	35					
4.2.2 Feak utstratige 86 4.3 Data and Methods 88 4.3 Data and Methods 89 4.3.1 Study area 89 4.3.2 Data 91 4.3.3 Model verification and performance. 92 4.3.3.1 Simulation and verification of daily runoff volume 93 4.3.3.2 Simulation and verification of daily peak discharge 93 4.3.3.3 Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of runoff volume 95 4.4.2 Verification of daily peak discharge 108 4.4.3 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in Final Verification at the La Mercy 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOUTH AFRICA 122 5.1 Introduction 123 123 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area		4.2.1 Stormflow volume	36					
4.3 Data and Methods 89 4.3.1 Study area. 89 4.3.2 Data 91 4.3.3 Model verification and performance. 92 4.3.3.1 Simulation and verification of daily punoff volume 93 4.3.3.2 Simulation and verification of daily geak discharge 93 4.3.3.3 Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of daily geak discharge 108 4.4.2 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 4.10 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOUL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction </td <td></td> <td>4.2.3 Sediment vield</td> <td>38</td>		4.2.3 Sediment vield	38					
4.3.1 Study area	4.3	Data and Methods	39					
4.3.2 Data 91 4.3.3 Model verification and performance 92 4.3.3.1 Simulation and verification of daily runoff volume 93 4.3.3.2 Simulation and verification of daily peak discharge 93 4.3.3.3 Simulation and verification of daily peak discharge 93 4.3.3.3 Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of runoff volume 95 4.4.2 Verification of daily peak discharge 108 4.4.3 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2 Identification of relatively homogeneous regions </td <td></td> <td>4.3.1 Study area</td> <td>39</td>		4.3.1 Study area	39					
4.3.3 Model verification and performance 92 4.3.3.1 Simulation and verification of daily runoff volume 93 4.3.3.2 Simulation and verification of daily peak discharge 93 4.3.3.3 Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of runoff volume 95 4.4.2 Verification of daily peak discharge 108 4.4.3 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 119 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction 123 5.2 The MUSLE 125 126 5.3 Data and Methods 128 5.3.2.1		4.3.2 Data)]					
4.3.3.2 Simulation and verification of daily peak discharge 93 4.3.3.2 Simulation and verification of daily peak discharge 93 4.3.3.3 Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of runoff volume 95 4.4.2 Verification of daily peak discharge 108 4.4.3 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield 119 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy Catchments under Sugarcane Land Cover 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOUL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2 Identification of relatively homogeneous regions 131 5.3.2.2 Identification of relatively homogeneous regions 132		4.3.3 Model verification and performance)2)2					
4.3.3.3Simulation and verification of daily sediment yield 94 4.4 Results and Discussion 95 4.4.1 Verification of runoff volume 95 4.4.2 Verification of daily peak discharge 108 4.4.3 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 110 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 12 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2.1 Idation of relatively homogeneous regions 131 5.3.2.1 Idation of relatively homogeneous regions		4.3.3.2 Simulation and verification of daily peak discharge)3					
4.4 Results and Discussion		4.3.3.3 Simulation and verification of daily sediment yield	<i>)</i> 4					
4.4.1 Verification of runoff volume	4.4	Results and Discussion9) 5					
4.4.2 Verification of daily peak discharge 108 4.4.3 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy Catchments under Sugarcane Land Cover 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2.2 Identification of relatively homogeneous regions 132 5.3.2.2 Identification of relatively homogeneous regions 132 5.3.2 Selection of daily upper training of daily upper training 132		4.4.1 Verification of runoff volume) 5					
4.4.3 Verification of daily sediment yield 109 4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 110 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF 122 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2.1 Data 131 5.3.2.2 Identification of relatively homogeneous regions 132 5.3.2.2 Selection of deliver totions 132		4.4.2 Verification of daily peak discharge)8					
4.5 Conclusions 110 4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield .119 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy Catchments under Sugarcane Land Cover 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOUL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2 Identification of relatively homogeneous regions 132 5.3.2.2 Identification of relatively homogeneous regions 132		4.4.3 Verification of daily sediment yield)9					
4.6 Acknowledgements 112 4.7 References 112 4.8 Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume 117 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy Catchments under Sugarcane Land Cover 120 DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA 122 5.1 Introduction 123 5.2 The MUSLE 125 5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2.1 Identification of relatively homogeneous regions 132 5.3.2.2 Identification of relatively homogeneous regions 132	4.5	Conclusions11	0					
 4.7 References	4.6	Acknowledgements11	2					
 4.8 Appendix 4.1: <i>ACRU</i> Variables used in the Simulation of Runoff Volume	4.7	References11	12					
 4.9 Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.119 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy Catchments under Sugarcane Land Cover	4.8	Appendix 4.1: ACRU Variables used in the Simulation of Runoff Volume11	17					
 4.10 Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy Catchments under Sugarcane Land Cover	4.9	Appendix 4.2: The MUSLE Parameters used in the Simulation of Sediment Yield.11	9					
Catchments under Sugarcane Land Cover120DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OF SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF SOUTH AFRICA.1225.1Introduction1235.2The MUSLE1255.3Data and Methods1285.3.1Study area1285.3.2Methodology1315.3.2.1Data1325.3.2.2Identification of relatively homogeneous regions1325.3.2.2Salaction of deily weather stations123	4.10	Appendix 4.3: Sediment Yield Events used in Final Verification at the La Mercy						
DEVELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN OFSOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OFSOUTH AFRICA		Catchments under Sugarcane Land Cover12	20					
SOIL AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OFSOUTH AFRICA	DEVI	ELOPMENT AND ASSESSMENT OF AN UPDATED TOOL FOR THE DESIGN O	F					
SOUTH AFRICA	SOIL	AND WATER CONSERVATION STRUCTURES IN THE SUGAR INDUSTRY OF	7					
5.1 Introduction .123 5.2 The MUSLE .125 5.3 Data and Methods .128 5.3.1 Study area .128 5.3.2 Methodology .131 5.3.2.1 Data .132 5.3.2.2 Identification of relatively homogeneous regions .132 5.3.2.2 Selection of deily weather stations .123	SOUT	TH AFRICA12	22					
5.2The MUSLE	5.1	Introduction12	23					
5.3 Data and Methods 128 5.3.1 Study area 128 5.3.2 Methodology 131 5.3.2.1 Data 132 5.3.2.2 Identification of relatively homogeneous regions 132 5.3.2.2 Identification of relatively homogeneous regions 132	5.2	The MUSLE12	25					
5.3.1 Study area. 128 5.3.2 Methodology 131 5.3.2.1 Data 132 5.3.2.2 Identification of relatively homogeneous regions 132 5.3.2.2 Identification of relatively homogeneous regions 132	5.3	Data and Methods	28					
5.3.2 Methodology		5.3.1 Study area	28					
5.3.2.2 Identification of relatively homogeneous regions		5.3.2 Methodology	31					
5.2.2.2 Execution of doily weather stations		5.3.2.2 Identification of relatively homogeneous regions	32					
5.5.2.5 Selection of daily weather stations		5.3.2.3 Selection of daily weather stations	32					
5.3.2.4 Selection and parameterisation of soils		5.3.2.4 Selection and parameterisation of soils	33					

	5.3.2.5 Simulation scenarios and parameterisation	134
	5.3.2.6 Development of an updated tool for the design of soil and water conservation structures and checking the adequacy of existing design in the sugar industry of South Africa	.s 135
	5.3.2.7 Analysis of relationships in accumulated annual rainfall and runoff across different relatively homogenous climatic zones	136
	5.3.2.8 Analysis of regional variations of climate on sediment yield	137
	5.3.2.9 Analysis of variation of sediment yield across different soil types	137
	5.3.2.10 Comparison of designs from the CoSDT and the current sugar industry design nomograph for spacing of contour banks	137
5.4	Results and Discussion	138
	5.4.1 Relationships in accumulated annual rainfall and runoff across different	138
	5.4.2 Impact of regional variations of climate on sediment yield	140
	5.4.3 Impact of soil texture on sediment yield	141
	5.4.4 Comparison of designs from the CoSDT and the current sugar industry desig	n 1 4 7
	5.4.5 Comparison of designs from LUPs prepared by specialists in the sugar indust	14 /
	and designs from the CoSDT	151
	5.4.5.1 North Coast	152
	5.4.5.2 South Coast	154
	5.4.5.3 Zululand and Irrigated region	156
	5.4.5.4 Midlands region	158
5.5	Conclusions	161
5.6	Acknowledgements	163
5.7	References1	163
5.8	Appendix 5.1: SASRI Design Nomograph	169
5.9	Appendix 5.2: Slope-Effect Chart	170
5.10	Appendix 5.3: ACRU Parameters for the Simulation Scenarios used in the	
	Development of the CoSDT for the Design of Soil and Water Conservation Structu	res
	in the Sugar Industry of South Africa	171
INVE	ESTIGATION OF SYSTEM DESIGN CRITERIA AND THE ECONOMIC IMPACT	7
OF V	ARYING DESIGN RETURN PERIODS FOR SOIL AND WATER	
CON	SERVATION STRUCTURES	180
6.1	Introduction	181
	6.1.1 Risk and return period	182
	6.1.2 Hydraulic design of soil and water conservation structures	183
	6.1.3 Costs of soil and water conservation structures	183

6

Methods and Assumptions	
6.2.1 Distribution of sediment yield events6.2.2 Investigation of relationships between large sediment yield events and a sediment yield events and	
associated rainfall, runoff and peak discharge events	
6.2.3 Investigation of the economic impact of varying design return period Results and Discussion	ls186 187
6.3.1 Event sediment yield distributions	187
6.3.2 Relationships between extreme events of sediment yield and the rain	fall, runoff
and peak discharge events associated with them	194
6.3.3 Economic impact of varying design return periods across different h	omogenous
Discussion and Conclusions	
Acknowledgements	
References	
ACTS OF SOIL AND WATER CONSERVATION STRUCTURES ON STR	EAM
W REDUCTION IN THE SUGAR INDUSTRY OF SOUTH AFRICA	
Introduction	
Methods and Assumptions	207
7.2.1 Impacts of soil and water conservation structures on stream flow red the sugar industry.	uctions in 208
7.2.2 Relationships in stream flow reductions due to soil and water conser	vation 208
Results and Discussion	
7.3.1 Impacts of soil and water conservation structures on stream flow red7.3.2 Relationships in stream flow reductions due to soil and water conser	uctions 208 vation
structures across different homogenous climatic zones	
Conclusions	
References	217
Appendix 7.1: Total Stream Flows and Stream Flow Reductions	
CUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER	ર
EARCH	
Study Objectives	
Review of Design Norms for Soil and Water Conservation Structures in the	e Sugar
Industry	
Verification of Runoff Volume, Peak Discharge and Sediment Yield	
Development and Assessment of an Updated Tool for the Design of Soil and	nd Water
Conservation Structures in the Sugar Industry of South Africa	
	 Methods and Assumptions 6.2.1 Distribution of sediment yield events 6.2.2 Investigation of relationships between large sediment yield events an associated rainfall, runoff and peak discharge events 6.2.3 Investigation of the economic impact of varying design return periods Results and Discussion 6.3.1 Event sediment yield distributions 6.3.2 Relationships between extreme events of sediment yield and the rain and peak discharge events associated with them 6.3.3 Economic impact of varying design return periods across different h climatic zones Discussion and Conclusions Acknowledgements References ACTS OF SOIL AND WATER CONSERVATION STRUCTURES ON STR W REDUCTION IN THE SUGAR INDUSTRY OF SOUTH AFRICA Introduction Methods and Assumptions 7.2.1 Impacts of soil and water conservation structures on stream flow reductions due to soil and water conser structures across different homogenous climatic zones 7.3.1 Impacts of soil and water conservation structures on stream flow red 7.3.2 Relationships in stream flow reductions due to soil and water conser structures across different homogenous climatic zones 7.3.1 Impacts of soil and water conservation structures on stream flow red 7.3.2 Relationships in stream flow reductions due to soil and water conser structures across different homogenous climatic zones 7.3.1 Impacts of soil and water conservation structures on stream flow red 7.3.2 Relationships in stream flow sand Stream Flow Reductions 7.3.1 Events of soil and Water Conservation Structures in th Industry Verification of Runoff Volume, Peak Discharge and Sediment Yield Development and Assessment of an Updated Tool for the Design of Soil an Conservation Structures in the Sugar Industry of South Africa

8.5	System Design Criteria and the Economic Impact of Varying Design Return Per	iods
		228
8.6	Impacts of Soil and Water Conservation Structures on Stream Flow Reduction	
	Activities in the Sugar Industry of South Africa	229
8.7	Achievement of Objectives and Novel Aspects of the Study	230
8.8	Trends in Runoff, Peak Discharge and Sediment Yield from Catchments under H	Bare
	Fallow Conditions and Sugarcane Production	231
8.9	Recommendations for Further Research	232

LIST OF TABLES

Page
Table 2.1 Soil loss tolerances in South Africa 18
Table 2.2 Comparison of South African design norms and norms used in the USA and Australia 22
Table 3.1 Characteristics and management practices of the La Mercy catchments (after Platford and
Thomas, 1985)
Table 3.2 Soil type distributions in the La Mercy catchments (after Platford and Thomas, 1985;
Smithers et al., 1995; Smithers et al., 1996; van Antwerpen et al., 2013)48
Table 3.3 Effects of catchment slope, overland flow path, soil type, tillage practice and conservation
structures on runoff at the La Mercy catchments under sugarcane land cover
Table 3.4 Soil erodibility and crop cover factors for each of the La Mercy Catchments
Table 3.5 Effects of catchment characteristics and management practices on runoff, peak discharge
and sediment yield70
Table 3.6 Inconsistent rainfall and runoff data at the La Mercy catchments
Table 3.7 Inconsistent peak discharge data at the La Mercy catchments under bare fallow and
sugarcane cover conditions
Table 3.8 Inconsistent sediment yield data at the La Mercy catchments under sugarcane cover
conditions
Table 4.1 Characteristics and management practices of the La Mercy catchments (after Platford and
Thomas, 1985; Smithers et al., 1996)90
Table 4.2 Soil type distributions in the La Mercy catchments (after Platford and Thomas, 1985;
Smithers et al., 1996)91
Table 4.3 Estimated time of concentration
Table 4.4 The cover management factor (<i>C</i>) for sugarcane (after Smithers et al., 1996)95
Table 4.5 Regression statistics for simulated vs observed runoff, peak discharge and sediment yield
Table 4.6 Soil variable and parameter selections (after Smithers et al., 1996)117
Table 4.7 MUSLE parameters used for the simulation of sediment yield119
Table 4.8 Sediment yield events used in final verification at the La Mercy catchments under
sugarcane cover
Table 5.1 Representative weather stations for the sugarcane growing regions (Schulze and Davis,
2018)

Table 5.2 Simulation scenarios used in the updated design norms for soil and water conservation
structures
Table 5.3 Select scenarios designed with the CoSDT and the current sugar industry design
nomograph for spacing of contour banks147
Table 5.4 Parameters from the CoSDT and the current sugar industry design nomograph149
Table 5.5 Designs from LUPs and the CoSDT for spacing of contour banks in the North Coast152
Table 5.6 Designs from LUPs and the CoSDT for spacing of contour banks in the South Coast155
Table 5.7 Designs from LUPs and the CoSDT for spacing of contour banks in Zululand and Irrigated
region156
Table 5.8 Parameters from the CoSDT and the specialists' design nomograph157
Table 5.9 Designs from LUPs and the CoSDT for spacing of contour banks in Midlands region159
Table 5.10 Crop factors, C for sugarcane (after Smithers et al., 1996)
Table 5.11 Soil and streamflow variable and parameter selections for the ACRU model (Smithers et
al., 1995; Smithers et al., 1996; Botha et al., 1999; Lumsden et al., 2003)171
Table 5.12 Soil erodibility factors, K (Lorentz and Schulze, 1995; Smithers et al., 1995)173
Table 5.13 ACRU model variables for sugarcane under different geographical and management
conditions (Schulze, 2013)173
Table 5.14 Support practices factors, P (Lorentz and Schulze, 1995; Renard et al., 1997)173
Table 5.15 Topographic factors, LS (Lorentz and Schulze, 1995; Renard et al., 1997)175
Table 5.16 Crop factor, C for green manure crops (Schulze, 1995b; Smithers and Schulze, 1995;
Renard et al., 1997)
Table 5.17 ACRU model variables for cover crops (Smithers et al., 1995; Schulze, 2018)177
Table 5.18 Crop factor, C for sugarcane depending on method of harvesting (Platford, 1987; Schulze,
1995b)
Table 5.19 Rainfall distribution type, 1 day, 2 year maximum rainfall, intensity multiplication factor
and the 30 minute,2 year rainfall intensity for the different homogenous regions (Schulze,
1995a)
Table 5.20 Catchment lag times for the different homogenous regions (Schulze, 1995a)177
Table 6.1 Machinery and equipment costs for construction of soil and water conservation structures
(after SASRI, 2019b)
Table 6.2 Top five (0.2%) sediment yield events in the four regions 193
Table 6.3 Extreme events of sediment yield and the rainfall, runoff and peak discharge events
associated with them in the four regions for a "no structure, conventional tillage, no green
manuring, burnt, re-burnt harvesting practice and 40% slope" scenario

Table 6.4 Sediment yield and the rainfall, runoff and peak discharge events associated with them in	
the four regions for a "no structure, conventional tillage, green manuring, burnt, re-burnt	
harvesting practice and 40% slope" scenario19)7

- Table 6.6 Hydraulic sections and design implementation costs of soil and water conservationstructures in the four homogenous climatic zones in the sugar industry of South Africa 199
- Table 7.1 Variation of SFRs as a percentage of MAR from baseline activities in the South Coast,

 Midlands, and Zululand and Irrigated regions

 210

Table 7.2	Total stream	flows and SF	FRs due to s	oil and w	ater con	servation	structures i	in sugarcane	
	fields				•••••	•••••)

LIST OF FIGURES

Figure 2.1 Nomograph for determining contour bank spacing in sugarcane fields (Platford, 1987)19
Figure 2.2 Impact of soil loss on crop yield (Russell, 1998b)20
Figure 2.3 Nomograph for contour bank spacing (van Staden and Smithen, 1989)21
Figure 3.1 Layout of the La Mercy catchments (Platford and Thomas, 1985)46
Figure 3.2 Weather stations within the vicinity of the La Mercy catchments
Figure 3.3 (a, b) Accumulated daily and (c, d) daily rainfall consistency plots: Base stations vs La
Mercy
Figure 3.4 Daily runoff vs Daily rainfall: La Mercy catchments, Bare fallow conditions53
Figure 3.5 Daily runoff vs Daily rainfall: La Mercy catchments, Sugarcane cover
Figure 3.6 Observed runoff vs rainfall for discrete events: La Mercy catchments, bare fallow55
Figure 3.7 Observed runoff vs rainfall for discrete events: La Mercy catchments, sugarcane cover55
Figure 3.8 Accumulated daily runoff: La Mercy catchments, bare fallow (January 1978 to December
1983)
Figure 3.9 Accumulated daily runoff: La Mercy catchments, sugarcane production (January 1986 to
December 1995)
Figure 3.10 Daily peak discharge vs daily peak rainfall intensity: La Mercy catchments, Sugarcane
cover, inconsistent events included (January 1986 to December 1995)61
Figure 3.11 Daily peak discharge vs daily runoff: La Mercy catchments, Sugarcane cover,
inconsistent events included (January 1986 to December 1995)61
Figure 3.12 Relationships between peak discharge and runoff events: La Mercy catchments,
Sugarcane cover, inconsistent events excluded (January 1986 to December 1995)62
Figure 3.13 Event sediment yield vs event rainfall: La Mercy catchments, Sugarcane cover
Figure 3.14 Sediment yield vs event runoff: La Mercy catchments, Sugarcane cover, high sediment
yield events circled64
Figure 3.15 Accumulated sediment yield: La Mercy catchments, sugarcane cover
Figure 4.1 The ACRU agrohydrological modelling system (Smithers and Schulze, 1995b)86
Figure 4.2 Layout of the La Mercy catchments, contour banks and waterways (after Platford and
Thomas, 1985)
Figure 4.3 Daily rainfall and runoff simulated with the SCDSS: Catchment 101, bare fallow
conditions96

Figure 4.4 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff depths
simulated from Catchment 101 under bare fallow cover
Figure 4.5 Daily rainfall and runoff simulated with the SCDSS: Catchment 102, bare fallow
conditions
Figure 4.6 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff volumes
simulated from Catchment 102 under bare fallow cover
Figure 4.7 Daily rainfall and runoff simulated with the SCDSS: Catchment 103, bare fallow
conditions
Figure 4.8 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff volumes
simulated from Catchment 103 under bare fallow cover
Figure 4.9 Daily rainfall and runoff simulated with the SCDSS: Catchment 104, bare fallow
conditions100
Figure 4.10 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff volumes
simulated from Catchment 104 under bare fallow cover
Figure 4.11 Daily runoff volumes simulated from Catchment 104 under bare fallow cover with
observed runoff scaled by a factor of 64 %101
Figure 4.12 Daily rainfall and runoff simulated with the SCDSS: Catchment 101, sugarcane cover
conditions102
Figure 4.13 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff volumes
simulated from Catchment 101 under sugarcane cover102
Figure 4.14 Daily rainfall and runoff simulated with the SCDSS: Catchment 102, sugarcane cover
conditions103
Figure 4.15 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff volumes
simulated from Catchment 102 under sugarcane cover
Figure 4.16 Daily rainfall and runoff simulated with the SCDSS: Catchment 103, sugarcane cover
conditions105
Figure 4.17 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff volumes
simulated from Catchment 103 under sugarcane cover
Figure 4.18 Daily rainfall and runoff simulated with the SCDSS: Catchment 104, sugarcane cover
conditions106
Figure 4.19 (a) Simulated vs observed and (b) frequency distribution plots: Daily runoff volumes
simulated from Catchment 104 under sugarcane cover107
Figure 4.20 Daily runoff volumes simulated from Catchment 104 under sugarcane cover with
observed runoff scaled by a factor of 64 %107

Figure 4.21 Daily peak discharge simulated using observed daily rainfall, simulated stormflow
volumes and estimated catchment times of concentration with the Schmidt-Schulze lag
equation108
Figure 4.22 Frequency analysis of daily peak discharge for catchments 101, 102, 103 and 104109
Figure 4.23 Daily sediment yield simulated from the La mercy catchments
Figure 5.1 Location of sugarcane production areas and mills in South Africa (SASA, 2018b)129
Figure 5.2 Regions with different sugarcane growth cycle lengths in South Africa (Schulze, 2013)
Figure 5.3 Relatively homogenous climatic zones in the sugar industry of South Africa131
Figure 5.4 MS Access graphical user interface for the design of soil and water conservation
structures in the sugar industry of South Africa136
Figure 5.5 MS Access graphical user interface for checking the adequacy of existing designs in the
sugar industry of South Africa136
Figure 5.6 Relationships in accumulated annual rainfall from sugarcane fields across the different
relatively homogenous climatic zones
Figure 5.7 Relationships in accumulated annual runoff from sugarcane fields across the different
relatively homogenous climatic zones
Figure 5.8 Relationships in accumulated annual sediment yield from sugarcane fields across the
different homogenous climatic zones141
Figure 5.9 Relationships in accumulated annual sediment yield from different soils in the North
Coast region142
Figure 5.10 Relationships in accumulated annual sediment yield from different soils in the Midlands
region142
Figure 5.11 Frequency distribution of daily rainfall in the four regions
Figure 5.12 Daily peak discharge in the four regions
Figure 5.13 Variation of MUSLE storm flow factors in the four regions
Figure 5.13 Variation of MUSLE storm flow factors in the four regions
Figure 5.13 Variation of MUSLE storm flow factors in the four regions 149 Figure 5.14 Variation of MUSLE C factors in the four regions 151 Figure 5.15 SASRI design nomograph for vertical intervals 169
Figure 5.13 Variation of MUSLE storm flow factors in the four regions 149 Figure 5.14 Variation of MUSLE C factors in the four regions 151 Figure 5.15 SASRI design nomograph for vertical intervals 169 Figure 5.16 SASRI design nomograph for panel widths 169
Figure 5.13 Variation of MUSLE storm flow factors in the four regions149Figure 5.14 Variation of MUSLE C factors in the four regions151Figure 5.15 SASRI design nomograph for vertical intervals169Figure 5.16 SASRI design nomograph for panel widths169Figure 5.17 Slope-effect chart (Wischmeier and Smith, 1978)170
Figure 5.13 Variation of MUSLE storm flow factors in the four regions149Figure 5.14 Variation of MUSLE C factors in the four regions151Figure 5.15 SASRI design nomograph for vertical intervals169Figure 5.16 SASRI design nomograph for panel widths169Figure 5.17 Slope-effect chart (Wischmeier and Smith, 1978)170Figure 6.1 Number of sediment yield events on an annual basis189
Figure 5.13 Variation of MUSLE storm flow factors in the four regions149Figure 5.14 Variation of MUSLE C factors in the four regions151Figure 5.15 SASRI design nomograph for vertical intervals169Figure 5.16 SASRI design nomograph for panel widths169Figure 5.17 Slope-effect chart (Wischmeier and Smith, 1978)170Figure 6.1 Number of sediment yield events on an annual basis189Figure 6.2 Event sediment yield distribution in the four homogenous climatic zones190
Figure 5.13 Variation of MUSLE storm flow factors in the four regions149Figure 5.14 Variation of MUSLE C factors in the four regions151Figure 5.15 SASRI design nomograph for vertical intervals169Figure 5.16 SASRI design nomograph for panel widths169Figure 5.17 Slope-effect chart (Wischmeier and Smith, 1978)170Figure 6.1 Number of sediment yield events on an annual basis189Figure 6.2 Event sediment yield distribution in the four homogenous climatic zones190Figure 6.3 Sediment yield summed from individual events on an annual basis191

Figure 6.5 Economic impact of varying return periods198
Figure 7.1 SFRs due to soil and water conservation structures in sugarcane fields in the North Coast
region
Figure 7.2 SFRs due to soil and water conservation structures in sugarcane fields in the South Coast
region
Figure 7.3 SFRs due to soil and water conservation structures in sugarcane fields in the Midlands
region
Figure 7.4 SFRs due to soil and water conservation structures in sugarcane fields in the Zululand and
Irrigated region
Figure 7.5 Relationships of SFRs due to soil and water conservation structures in sugarcane fields in
the various homogenous regions

LIST OF ACRONYMS

ACRU	Agricultural Catchments Research Unit
ARC	Agricultural Research Council
CARA	Conservation of Agricultural Resources Act
CoSDT	Contour Spacing Design Tool
DAERD	Department of Agriculture, Environmental Affairs and Rural Development
DARD	Department of Agriculture and Rural Development
DAWS	Department of Agriculture and Water Supply
KZN	KwaZulu – Natal
LUP	Land Use Plan
MAP	Mean Annual Precipitation
MAR	Mean Annual Runoff
MUSLE	Modified Universal Soil Erosion Equation
NRCS	Natural Resources Conservation Service
NVFFA	National Veld and Forest Fire Act
NWA	National Water Act
RUSLE	Revised Universal Soil Erosion Equation
SA	South Africa
SASA	South African Sugar Association
SASEX	South African Sugar Association Experiment Station
SASRI	South African Sugarcane Research Institute
SCDSS	Sugarcane Decision Support System
SCS	Soil Conservation Service
SCS-SA	Soil Conservation Service – South Africa
SFR	Stream Flow Reduction
SFRA	Stream Flow Reduction Activities
SLEMSA	Soil Loss Estimator for Southern Africa
UKZN	University of KwaZulu – Natal
USDA	United States Department of Agriculture
USLE	Universal Soil Erosion Equation

1 INTRODUCTION

This chapter contains background to the study on the development of updated design norms for soil and water conservation structures in the sugar industry in South Africa. It covers the rationale, objectives of the study that include the research aim and specific objectives and an outline of the thesis structure.

1.1 Background

Soil erosion is a serious problem emanating from a combination of agricultural intensification, soil degradation and intense rainstorms (Amore *et al.*, 2004). Moreover, when the rate of soil loss is unsustainable, it leads to a reduction in crop yield and hence the need to limit soil losses to sustainable levels (Russell, 1998b). The mechanical means of soil conservation in the South Africa sugar industry is by use of contour banks and waterways (Platford, 1987), and the standards and guidelines for the design of soil conservation structures were published by SASA (2002). The nomograph for the design of soil and water conservation structures in the sugar industry of South Africa was developed by Platford (1987) who used observations from runoff plots and the long term average annual soil loss simulated using the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965; Wischmeier and Smith, 1978). The USLE aggregates soil loss and yet erosion occurs on an event basis (Schulze, 2013). The Modified Universal Soil Loss Equation (MUSLE) (Williams, 1975b) on the other hand is an event based model (Williams and Arnold, 1997).

The sugar industry design norms for spacing of contour banks advocate that specific designs should be used to design soil conservation structures for slopes less than 3% or greater than 30% (Russell, 1994), although the sugar industry design nomograph includes slopes of up to 40% (Platford, 1987; SASA, 2002). There are also differences between the design norms contained in the National Soil Conservation Manual (van Staden and Smithen, 1989; DAWS, 1990) and design norms used in the sugar industry (Platford, 1987; SASA, 2002) (*e.g.* maximum slope and cover factors for sugarcane). In addition, a 10 year return period is specified by SASA (2002) for the design of soil and water conservation structures. The sugar industry design nomograph does not (Smithers, 2014):