GAIA AND KEPLER OBSERVATIONS OF NEW GENERAL CATALOGUE 6811

> ATINO DORIS EGGO (BED, KYAMBOGO) (BU/GS17/MSP/1)

A DISSERTATION SUBMITTED TO THE DIRECTORATE OF GRADUATE STUDIES, RESEARCH AND INNOVATION IN PARTIAL FULFILMENT OF THE REQUIREMENTS LEADING TO THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN PHYSICS OF BUSITEMA UNIVERSITY

MAY, 2022

Declaration

I, Atino Doris Eggo, declare that the work presented in this dissertation is my own and has not been presented to this institution or any other institution for any award. I confirm that where I have quoted from the works of other authors, the source is always acknowledged. With the exception of such quotations, this dissertation is my original work.

Signed:

Date:

Approval

This study was conducted under the guidance and supervision of:

1. Dr. Emirant Bertillas Amabayo

Department of Physics, Faculty of Science and Education

Busitema University .

Signed:

Date:

2. Dr. Oyirwoth Patrick Abedigamba

Department of Physics, Faculty of Science

Kyambogo University .

Signed:

Date:

Dedication

To my beloved Daughters Theresa, Mercy, Laeticia, and Anna (RIP)

Acknowledgements

I would like to express my appreciations to the Almighty GOD who is the source of wisdom and knowledge. He has always given me hope and courage in every situation that I came across during the course of this work. He has guided me during hard times. May His name be glorified.

I sincerely acknowledge the wonderful suggestions, advice, guidance and motivation from my supervisors Dr. Oyirwoth Patrick Abedigamba and Dr. Emirant Bertillas Amabayo.

I extend my sincere thanks to Assoc. Prof. Okaka Wilson and Eng. Okaka David for the financial support to this work and all friends for the moral support.

Abstract

In this study, the National Aeronautics and Space Administration (NASA) Kepler space-craft high-precision data, and *Gaia* astrometric data were used to identify new members of New General Catalogue, NGC 6811 open cluster. These new members would be used to re-define and estimate the properties of the open cluster. The new cluster members were classified in the Hertzsprung Russell (HR) diagram. Delta (δ) Scuti stars were identified from the HR diagram. A binarity study conducted on the δ Scuti stars identified were used to re-define and estimate the cluster properties of NGC 6811. Five new single member δ Scuti were identified as Kepler Input Catalogue KIC 9716483, KIC 9716528, KIC 9716615, KIC 9716843 and KIC 9594935. New members were combined with the well-known members to estimate mean distance modulus as 10.42 pc, $\log Age = 0.103$ and metallicity = 0.0152 dex. This work was limited to *Gaia* second Data release (DR2) magnitudes as well as the stars that have known parallax and proper motion values only. A comparison of parallax and proper motion of *Gaia* DR2 with the most recently released Gaia Early Data Release 3 (EDR3) was made and shows different values. This implys that the two sets of data should be used independently.

Table of Contents

Li	List of Figures vii			
\mathbf{Li}	st of	Tables	ix	
Al	obrev	viations	x	
As	strop	hysical Constants	xi	
Sy	mbo	ls	xii	
1	INT	RODUCTION	1	
	1.1	Background	1	
	1.2	Statement of the problem	2	
	1.3	Aim of the study	2	
	1.4	Objectives	3	
	1.5	Scope	3	
	1.6	Significance	3	
2	TH	EORY AND LITERATURE REVIEW	4	
	2.1	Gaia satellite	4	
	2.2	Kepler satellite	5	
	2.3	NGC 6811	6	
	2.4	The delta Scuti stars	7	
	2.5	Kepler and Gaia stars	7	
	2.6	Binarogram	7	
		2.6.1 The Hertzsprung Russell (HR) diagram	11	
		2.6.2 The theoretical isochrone	11	
3	ME	THODS	13	
	3.1	Introduction	13	
	3.2	Identification of new members of the open cluster NGC 6811 \ldots .	13	
		3.2.1 Gaia's astrometric data	13	
		3.2.2 <i>Gaia</i> 's luminosity and effective temperature	14	
		3.2.3 Identification of the delta Scuti stars from the HR diagram	15	
	3.3	Determination of the binary stars with		
		δ Scuti component	15	

		3.3.1 Kepler's asteroseismic data \ldots	15
	3.4	Re-defining and estimating of the properties of open cluster NGC 6811	
		using Gaia parallax and proper motion	16
4	RE	SULTS AND DISCUSSION	18
	4.1	Introduction	18
	4.2	Identification of new members of the open cluster NGC 6811	18
	4.3	Classification of the new member stars using the Hertzsprung Rus-	
		sell diagram	19
	4.4	Identification of the δ Scuti stars from the Hertzsprung Russell dia-	
		gram	20
	4.5	Determination of the binary stars with δ Scuti component	21
		$4.5.1 \text{light curves} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	21
		4.5.2 Periodogram	25
		4.5.3 Binarogram	28
	4.6	Re-defining and estimation of the properties of open cluster NGC 6811	
		using Gaia parallax and proper motion	32
	4.7	The comparison of $Gaia$ Data Release 2 and Early Data Release 3 .	32
5	CO	NCLUSION AND FUTURE WORK	34
	5.1	Conclusion	34
	5.2	Future work	34
	5.3	Acknowledgement	35

References

List of Figures

2.1	Gaia ESA satellite for astrometric data (https://www.esa.int) 4
2.2	NASA <i>Kepler</i> satellite for photometric data (NASA/Wendy Stenzel). 6
2.3	Binarogram for KIC 11754974, (Balona 2014)
2.4	H-R diagram (Croswell 2011) $\ldots \ldots 12$
2.5	Theoretical isochrone for log t = 9.4 and $Z = 0.17$ (Abedigamba et
	al.2015)
3.1	Part of HR diagram 3.5 input form for stellar isochrones and their
	derivatives. $\dots \dots \dots$
4.1	HR diagram for faint stars that are candidate members of NGC 6811 19
4.2	H-R diagram for Probable new stars in NGC 6811 from the faint
	stars
4.3	H-R diagram for new stars in NGC 6811 using $Gaia$ proper motion . 21
4.4	KIC 9716843 light curve 22
4.5	KIC 9716528
4.6	KIC 9716483 light curve 23
4.7	KIC 9594935 light curve 24
4.8	KIC 9716615 light curve 24
4.9	KIC 9716483 25
4.10	KIC 9716528
4.11	KIC 9716843 26
4.12	KIC 9716615
4.14	Binarogram of a known binary star KIC 11754974 Murphy et al.
	(2013b)
4.15	Binarogram of KIC 9716843
4.16	Binarogram of KIC 9716483
4.17	Binarogram of KIC 9594935
4.18	Binarogram of KIC 9716528
4.19	Binarogram of KIC 9716615
4.20	The HR diagram of the new stars identified in the cluster NGC 6811
	showing isochrones

List of Tables

2.1	Kepler stars with their Gaia ID	8
3.1	δ Scuti stars edge values 	15
4.1	δ Scuti stars	21

Abbreviations

AfAS	African Astronomical Society.
DR1	Data Release 1.
$\mathrm{DR2}$	Data Release 2.
EDR3	Early Data Release 3.
ESA	European Space Agency.
\mathbf{G}	Gravitational constant.
\mathbf{HR}	Hertzsprung Russell.
KIC	Kepler Input Catalogue.
NASA	National Aeronautics and Space Administration.
RGB	\mathbf{R} ed \mathbf{G} iant \mathbf{B} ranch
\mathbf{RGC}	Red Giant Clump.
TESS	Transiting Exoplanet Survey Satellite.

Astrophysical Constants

Light year (ly)	=	$9.460 \times 10^{15} \text{ m}$
Parsec (pc)	=	$3.085 \times 10^{16} \text{ m}$
Solar mass (M_{\odot})	=	$1.988 \times 10^{30} \text{ kg}$
Solar luminosity (L_{\odot})	=	$3.839\times10^{26}~{\rm W}$

Symbols

L_{\odot}	=	Solar luminosity.
M_{\odot}	=	Solar mass.
ξ_t	=	Microturbulent velocity.
m_{\odot}	=	Solar metallicity.
[M/H]	=	metallicity.
$T_{\rm eff}$	=	Effective temperature.
$v \sin i$	=	Projectional rotational velocity.
$\log g$	=	Surface gravity.
$V_{\rm r}$	=	Radial velocity.
pc	=	Parsec.

Chapter 1

INTRODUCTION

1.1 Background

The Gaia mission launched in 2013 measures positions in right ascension and declination, trigonometric parallaxes, proper motions, and photometry of million of stars, provides an average parallax error up to 0.04 mas for sources of magnitude, $G \leq 15$ mag and around 0.7 mas for sources of magnitude, G = 20 mag. The Gaia second Data Release (DR2) provides proper motions of more than 1.3 billion sources with uncertainties up to 0.06 mas yr^{-1} for the sources having $G \leq 15$ mag, 0.2 mas yr^{-1} for G = 17 mag and 1.2 mas yr^{-1} for sources up to magnitude, G = 20 mag.

The National Aeronautics and Space Administration (NASA) spacecraft *Kepler* provides photometric time-series of un-precedented quality for solar-type and red-giant stars (Gilliland et al., 2010). The asteroseismic analysis of these data has led to remarkable results as reviewed by Chaplin and Miglio (2013).

The asteroseismic analysis allowed for determination of the evolutionary stage of evolved stars, period spacings of mixed oscillation modes, separate hydrogen-shell-burning and helium-core-burning red giants (Bedding et al., 2011; Mosser et al., 2011; Stello et al., 2013).

The New General Catalogue, NGC 6811, is one of the four open clusters located in the *Kepler* field of view of the NASA Space Telescope *Kepler* (Borucki et al., 2003) and (Gilliland et al., 2010), where others are NGC 6819, NGC 6791 and NGC 6866. Among its members there are several known pulsating A-F stars of the δ Scuti, γ Doradus, and hybrid type, which made this cluster a very interesting

References

- Arenou, F., Luri, X., Babusiaux, C., Fabricius, C., Helmi, A., Muraveva, T., Robin,
 A., Spoto, F., Vallenari, A., Antoja, T., et al. (2018). Gaia data release
 2-catalogue validation. Astronomy & Astrophysics, 616:A17.
- Arentoft, T., Brogaard, K., Jessen-Hansen, J., Aguirre, V. S., Kjeldsen, H., Mosumgaard, J., and Sandquist, E. (2017). Convective-core overshoot and suppression of oscillations: Constraints from red giants in ngc 6811. The Astrophysical Journal, 838(2):115.
- Armstrong, D., Kirk, J., Lam, K., McCormac, J., Osborn, H., Spake, J., Walker, S., Brown, D., Kristiansen, M., Pollacco, D., et al. (2015). K2 variable catalogue–ii. machine learning classification of variable stars and eclipsing binaries in k2 fields 0–4. Monthly Notices of the Royal Astronomical Society, 456(2):2260–2272.
- Balona, L. (2014). Binary star detection using the time-delay method: application to 34 kepler objects of interest. Monthly Notices of the Royal Astronomical Society, 443(3):1946–1954.
- Batalha, N. M., Borucki, W. J., Koch, D. G., Bryson, S. T., Haas, M. R., Brown, T. M., Caldwell, D. A., Hall, J. R., Gilliland, R. L., Latham, D. W., et al. (2010). Selection, prioritization, and characteristics of kepler target stars. *The Astrophysical Journal Letters*, 713(2):L109.
- Bedding, T. R., Mosser, B., Huber, D., Montalbán, J., Beck, P., Christensen-Dalsgaard, J., Elsworth, Y. P., García, R. A., Miglio, A., Stello, D., et al. (2011). Gravity modes as a way to distinguish between hydrogen-and helium-burning red giant stars. *Nature*, 471(7340):608–611.
- Borucki, W. J., Koch, D. G., Basri, G., Batalha, N., Brown, T. M., Bryson, S. T., Caldwell, D., Christensen-Dalsgaard, J., Cochran, W. D., DeVore, E., et al.

(2011). Characteristics of planetary candidates observed by kepler. ii. analysis of the first four months of data. *The Astrophysical Journal*, 736(1):19.

- Borucki, W. J., Koch, D. G., Lissauer, J. J., Basri, G. B., Caldwell, J. F., Cochran, W. D., Dunham, E. W., Geary, J. C., Latham, D. W., Gilliland, R. L., et al. (2003). The kepler mission: a wide-field-of-view photometer designed to determine the frequency of earth-size planets around solar-like stars. In *Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation*, volume 4854, pages 129–140. International Society for Optics and Photonics.
- Bowman, D. M. and Kurtz, D. W. (2018). Characterizing the observational properties of δ sct stars in the era of space photometry from the kepler mission. *Monthly Notices of the Royal Astronomical Society*, 476(3):3169–3184.
- Bruntt, H., Basu, S., Smalley, B., Chaplin, W., Verner, G., Bedding, T., Catala, C., Gazzano, J.-C., Molenda-Żakowicz, J., Thygesen, A., et al. (2012). Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type kepler targets. *Monthly Notices of the Royal Astronomical Society*, 423(1):122–131.
- Burke, C. J., Christiansen, J. L., Mullally, F., Seader, S., Huber, D., Rowe, J. F., Coughlin, J. L., Thompson, S. E., Catanzarite, J., Clarke, B. D., et al. (2015).
 Terrestrial planet occurrence rates for the kepler gk dwarf sample. *The Astrophysical Journal*, 809(1):8.
- Castro-Ginard, A., Jordi, C., Luri, X., Julbe, F., Morvan, M., Balaguer-Núñez, L., and Cantat-Gaudin, T. (2018). A new method for unveiling open clusters in gaia-new nearby open clusters confirmed by dr2. Astronomy & Astrophysics, 618:A59.
- Chang, S.-W., Protopapas, P., Kim, D.-W., and Byun, Y.-I. (2013). Statistical properties of galactic δ scuti stars: revisited. *The Astronomical Journal*, 145(5):132.
- Chaplin, W. J., Kjeldsen, H., Christensen-Dalsgaard, J., Basu, S., Miglio, A., Appourchaux, T., Bedding, T. R., Elsworth, Y., García, R., Gilliland, R. L., et al. (2011). Ensemble asteroseismology of solar-type stars with the nasa kepler mission. *Science*, 332(6026):213–216.
- Chaplin, W. J. and Miglio, A. (2013). Asteroseismology of solar-type and red-giant stars. *Annual Review of Astronomy and Astrophysics*, 51:353–392.

- Corsaro, E., Stello, D., Huber, D., Bedding, T. R., Bonanno, A., Brogaard, K.,
 Kallinger, T., Benomar, O., White, T. R., Mosser, B., et al. (2012).
 Asteroseismology of the open clusters ngc 6791, ngc 6811, and ngc 6819 from 19
 months of kepler photometry. *The Astrophysical Journal*, 757(2):190.
- Doyle, L. R., Carter, J. A., Fabrycky, D. C., Slawson, R. W., Howell, S. B., Winn, J. N., Orosz, J. A., Pr´sa, A., Welsh, W. F., Quinn, S. N., et al. (2011). Kepler-16: a transiting circumbinary planet. *Science*, 333(6049):1602–1606.
- Frasca, A., Molenda-Żakowicz, J., De Cat, P., Catanzaro, G., Fu, J., Ren, A., Luo, A., Shi, J., Wu, Y., and Zhang, H. (2016). Activity indicators and stellar parameters of the kepler targets-an application of the rotfit pipeline to lamost-kepler stellar spectra. Astronomy & Astrophysics, 594:A39.
- Gaia, C., Brown, A., Vallenari, A., Prusti, T., de Bruijne, J., Babusiaux, C., Juhász, Á., Marschalkó, G., Marton, G., Molnár, L., et al. (2018). Gaia data release 2 summary of the contents and survey properties. Astronomy & Astrophysics, 616(1).
- Gilliland, R. L., Jenkins, J. M., Borucki, W. J., Bryson, S. T., Caldwell, D. A., Clarke, B. D., Dotson, J. L., Haas, M. R., Hall, J., Klaus, T., et al. (2010).
 Initial characteristics of kepler short cadence data. *The Astrophysical Journal Letters*, 713(2):L160.
- Gruppioni, C., Ciesla, L., Hatziminaoglou, E., Pozzi, F., Rodighiero, G., Santini, P., Armus, L., Baes, M., Braine, J., Charmandaris, V., et al. (2017). Tracing the evolution of dust obscured star formation and accretion back to the reionisation epoch with spica. *Publications of the Astronomical Society of Australia*, 34.
- Huber, D., Bedding, T., Stello, D., Hekker, S., Mathur, S., Mosser, B., Verner, G., Bonanno, A., Buzasi, D., Campante, T., et al. (2011). Testing scaling relations for solar-like oscillations from the main sequence to red giants using kepler data. *The Astrophysical Journal*, 743(2):143.
- Kahraman Aliņumber=1, cavuş, F., Soydugan, E., Smalley, B., and Kubát, J. (2017). Eclipsing binary stars with a δ scuti component. Monthly Notices of the Royal Astronomical Society, 470(1):915–931.
- Kirk, A., Thornton, A., Harrison, J., Militello, F., Walkden, N., Team, M., Team,E. M., et al. (2016). L-mode filament characteristics on mast as a function of

plasma current measured using visible imaging. *Plasma Physics and Controlled Fusion*, 58(8):085008.

- Luo, Y., Zhang, X., Luo, C., Deng, L., and Luo, Z. (2009). Variable stars in the open cluster ngc 6811. New Astronomy, 14(6):584–589.
- Martín-Fleitas, J., Sahlmann, J., Mora, A., Kohley, R., Massart, B., L'hermitte, J., Le Roy, M., and Paulet, P. (2014). Enabling gaia observations of naked-eye stars. In Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, volume 9143, page 91430Y. International Society for Optics and Photonics.
- McQuillan, A., Mazeh, T., and Aigrain, S. (2014). Rotation periods of 34,030 kepler main-sequence stars: the full autocorrelation sample. *The Astrophysical Journal Supplement Series*, 211(2):24.
- Mosser, B., Barban, C., Montalbán, J., Beck, P., Miglio, A., Belkacem, K., Goupil, M., Hekker, S., De Ridder, J., Dupret, M.-A., et al. (2011). Mixed modes in red-giant stars observed with corot. Astronomy & Astrophysics, 532:A86.
- Oláh, K., Kővári, Z., Günther, M., Vida, K., Gaulme, P., Seli, B., and Pál, A. (2021). Toward the true number of flaring giant stars in the kepler field-are their flaring specialities associated with their being giant stars? Astronomy & Astrophysics, 647:A62.
- Reinhold, T. and Gizon, L. (2015). Rotation, differential rotation, and gyrochronology of active kepler stars. *Astronomy & Astrophysics*, 583:A65.
- Stello, D., Huber, D., Bedding, T. R., Benomar, O., Bildsten, L., Elsworth, Y. P., Gilliland, R. L., Mosser, B., Paxton, B., and White, T. R. (2013). Asteroseismic classification of stellar populations among 13,000 red giants observed by kepler. *The Astrophysical Journal Letters*, 765(2):L41.
- Tkachenko, A., Pavlovski, K., Johnston, C., Pedersen, M., Michielsen, M., Bowman, D., Southworth, J., Tsymbal, V., and Aerts, C. (2020). The mass discrepancy in intermediate-and high-mass eclipsing binaries: The need for higher convective core masses. Astronomy & Astrophysics, 637:A60.
- Vrard, M., Kallinger, T., Mosser, B., Barban, C., Baudin, F., Belkacem, K., and Cunha, M. (2018). Vizier online data catalog: Kic red giants radial modes amplitude & lifetime (vrard+, 2018). VizieR Online Data Catalog, pages J-A+.

Zhang, B. (2020). Fast radio bursts from interacting binary neutron star systems. The Astrophysical Journal Letters, 890(2):L24.