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Abstract

The recent outbreak of Ebola viral disease (EVD) in West Africa reminded us that an
effective anti-viral treatment still does not exist, despite the significant progress that has
recently been made in understanding biology and pathology of this lethal disease.
Currently,  there  are  no  approved  vaccine  and/or  prophylactic  medication  for  the
treatment of EVD in the market. However, the serious pandemic potential of EVD
mobilized research teams in the academy and the pharmaceutical industry in the effort
to find an Ebola cure as fast as possible. In this chapter, we are giving the condensed
review of different approaches and strategies in search of a drug against Ebola. We have
been focusing on the review of the targets that could be used for in silico, in vitro, and/or
in vivo drug design of compounds that interact with the targets in different phases of
the Ebola virus life cycle.
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1. Introduction

Ebola virus (EBOV) is a (-)ssRNA filovirus, known for its extreme insidiousness. Case fatality
rates of the current 2014 outbreak in West Africa are 50–70% [1]. Transmission of EBOV is
predominantly via physical contact with bodily fluids of infected people or corpses and can
be limited by a proper combination of early diagnosis, contact tracing, isolation of patients,
infection control, and safe burial [2, 3].

The infection is characterized by suppression of the immune system and of the systemic
inflammatory response, followed by the collapse of the vascular and immune systems, and



multi-organ failure. The patient dies from a combination of dehydration, massive bleeding,
and shock. Currently, there are no approved drugs for the hemorrhagic fever caused by EBOV.
However, there is some conflicting clinical evidence that antibodies isolated from survived
patients may be effective in the treatment of the infection caused by EBOV [4, 5].

In this book chapter, we will review possible targets that are being used or could be used for
structure-based design of small molecule inhibitors against EBOV. We will start the chapter
with a brief review of the structure and action of EBOV, and then we will describe the targets
along with possible hotspots. Additionally, we will present a short review of small molecules
that could be used as medicaments against EBOV.

2. Structure and action of Ebola virus

Knowledge about the life cycle of EBOV, supported with structural information, is crucial for
the successful design of antivirals. This is the reason why we will start our review with the
structural information about EBOV.

The RNA genome of Ebola virus contains information for constructing seven proteins (GP,
VP24, VP30, VP35, VP40, L-protein, nucleoprotein), which assemble with the genomic RNA
to form one of the most lethal viruses [6]. EBOV's RNA exists in antisense form, which means
that it cannot be used for proteins' production directly [7]. For protein building, the comple‐
mentary copy of the negative RNA is required, which is produced with the help of the viral
polymerase (L-protein). Not all genes are transcribed fully through. For example, transcription
of GP gene could lead to three different proteins: GP, sGP, and ssGP. A small nonstructural
sGP (secretory glycoprotein) is the protein that is efficiently secreted from infected cells. sGP
acts as mimic of full GP that is presented at the surface of EBOV, this mimicry is one of the
ways of how the Ebola virus deceive the immune system, by urging the body to develop
antibodies to sGP instead of full GP [8, 9]. EBOV is enclosed by a membrane hijacked from an
infected cell and covered with Ebola glycoproteins. A layer of matrix proteins supports the
membrane on the inside and holds a cylindrical nucleocapsid at the center, which stores and
delivers the RNA genome.

The main task of Ebola glycoprotein (GP) is binding to receptors located on a host-cell surface
and getting the Ebola genome inside. GP is distributed throughout the whole viral membrane
surface and the large proportion of oligosaccharides, which are attached to the GP making the
virus unrecognizable for the adaptive immune system. GP is a highly dynamic protein that
snaps into different shapes when it binds to a cell surface, driving the virus close enough to
get fused with the membrane.

The viral matrix is composed of two proteins: VP40 and VP24. The function of VP40, known
as the major matrix protein, is to assist in the process of budding. VP40 hexamers form layers
that support the nucleocapsid in the middle of the virion. The minor matrix protein VP24 is
involved in interferon antagonism.
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