

DEVELOPMENT OF AN OPTIMAL INTERVAL MAINTENANCE PLAN. A CASE OF NAMEKARA MINING COMPANY

BY

BWAMBALE SAMUEL

Final year project report submitted to the department of mining engineering faculty of engineering in partial fulfillment of the requirements for the award of the bachelor of science in mining engineering of Busitema University

October, 2023

ABSTRACT

Extraction, haulage and material and processing of ore to get the end products largely depend on the availability, reliability and effective utilization of equipment. Equipment at Namekara mining company takes 45% of the total production costs, so it is important to keep it in normal working conditions and the availability of equipment high. In this study, failure data for the excavator, wheel loader, scrapper, conveyor belt system and haulage trucks were collected and found haulage trucks with the highest failure rate. Haulage equipment was decomposed into individual subsystems and the transmission, hydraulic dumping and the body subsystems were found to be having the highest failure frequencies. Therefore, the reliability study that has been conducted in this research has based mostly on these subsystems of truck N6.

Failure and mining data for the three haulage equipment used at the mine was collected from maintenance and mining records and has been analyzed. The data was collected over a seventeenmonth period of the mine's operation. Trend and serial correlation tests to validate the assumption of IID (Independent and Identically Distribution) has been conducted. According to the results, the data collected has been found to be independent and identical meaning the occurrence of the current failures does not depend on the previous failures. Therefore, data can be used to model the sub system's reliability. FMEA for the three critical subsystems was also carried out followed by fault tree diagrams to analyze the equipment from subsystem level to components level in order to ascertain the root causes of failures and come up with improvements have been made. This was done to improve system performance and also gain a thorough understanding of the infant and direct causes of failures to subsystems and components. FMEA indicated that cylinder seal failure, valve failure, hydraulic pump failure, electrical components failure, clutch failure and failure for the transmission to engage are the most critical failure modes according to their RPN values.

The time between failure (TBF) for the three subsystems was analyzed and tested for distribution estimation and the Weibull distribution had a higher correlation coefficient. The reliability study for the subsystems was therefore done using the Weibull distribution. Reliability plots have been obtained for the three subsystems, preventive reliability maintenance intervals for the three subsystems have been obtained. Maintaining reliability and availability of equipment to meet the production requirement is vital for maintenance and production departments of the mine. To achieve these levels, equipment should be maintained at appropriate times to reduce machine/equipment downtimes as well as reducing maintenance costs.

KEYWORDS:

Reliability centered maintenance (RCM), corrective maintenance (CM), mean time between failures (MTBF), haulage truck, downtime, maintainability.

DECLARATION

I declare that this research project is my own original work except where due acknowledgement has been made. I declare that this work has never been submitted to this university or any other institution for partial fulfillment for any award

Name: BWAMBALE SAMUEL

Reg. NO.: BU/UG/2019/0089

Date: october-2023

Signature:

ACKNOWLEDGEMENT

I take this opportunity to thank the almighty GOD for granting me life, good health and the ability to research and gather information that has been integrated into this report

I am deeply indebted to my dear supervisors: MR LUBAALE SOLOMON AZARIUS and MR TUGUME WYCLIF for the time, support, guidance, knowledge and advice provided to me during the preparation of this final year project report. May the almighty reward them accordingly

Cannot forget the tangible and spiritual effort of my mother and beloved sisters dedicated towards my reaching here. I am thankful to them for never giving up on me.

APPROVAL

This is to certify that this final year project report has been written under the guidance of my supervisors and it is to be handed in to the department of mining engineering at Busitema university.

SUPERVISOR NAME: MR. LUBAALE SOLOMON AZARIUS BUSITEMA UNIVERSITY MARITIME INSTITUTE SIGNATURE: DATE: NAME: MR TUGUME WYCLIFF HoD. DEPARTMENT OF MINING ENGINEERING SIGNATURE: DATE:

Co	ntents	

1	CH	APTE	ER ONE1
	1.1	BAG	CKGROUND1
	1.2	RES	SEARCH GAP2
	1.3	PRO	DBLEM STATEMENT
	1.4	JUS	TIFICATION
	1.5	OB.	JECTIVES
	1.5.	1	MAIN OBJECTIVE3
	1.5.	2	SPECIFIC OBJECTIVES
	1.6	SIG	NIFICANCE OF THE STUDY
	1.7	SCO	OPE OF THE STUDY4
2	CH	APTE	ER TWO: LITERATURE REVIEW1
,	2.1	AN	ALYSIS OF MAINTENANCE DATA1
	2.1.	1	MAINTENANCE DATA1
	2.1.	2	MAINTENANCE METHODS BEING USED1
,	2.2	STA	TISTIC ANALYSIS OF FAILURE DATA2
	2.2.	1	BATH TUB DISTRIBUTION
	2.2.	2	WEIBULL ANALYSIS
	2.2.	3	WEIBULL SHAPE PARAMETER
	2.2.	4	WEIBULL SCALE PARAMETER3
	2.2.	5	WEIBULL LOCATION PARAMETER
	2.2.	6	EXCEL SOLVER TOOL (EST)4
	2.2.	7	WEIBULL ANALYSIS IN MATLAB
,	2.3	FAI	LURE MODES AND EFFECTS ANALYSIS (FMEA)4
,	2.4	FAU	JLT DETECTION AND DIAGNOSIS
,	2.5	MA	INTENANCE SCHEDULING AND PLANNING6
	2.5.	1	ASSET MANAGEMENT6
3	CH	APTE	ER THREE:
	3.1	ME	THODOLOGY
	3.1.	1	INTRODUCTION
	3.1.	2	DATA COLLECTION
	3.1.	3	DATA COLLECTION TECHNIQUES

	3.1.4	DATA ANALYSIS	8
	3.2 EQ	QUIPMENT FAILURE DATA ANALYSIS	9
	3.2.1	DATA COLLECTION	9
	3.2.2	DATA EVALUATION	14
	3.2.3	THE IID ASSUMPTION	14
	3.2.4	ANALYSIS OF TBF AND TTR DATA	17
	3.2.5	ESTIMATION OF DISTRIBUTION PARAMETERS	22
	3.2.6	MEAN TIME BETWEEN FAILURE AND MEAN TIME TO REPAIR	22
	3.3 MI EFFECTS	ETHODOLOGY FOR SPECIFIC OBJECTIVE TWO: TO DO A FAILURE MODE AND ANALYSIS ON THE CRITICAL SUBSYSTEMS OF THE EQUIPMENT	ND 22
	3.3.1	INTRODUCTION	22
	3.3.2	PROCEDURE	22
	3.3.3	PROCEDURE THAT HAS BEEN USED FOR FMEA	23
	3.4 FN	/IEA ANALYSIS	23
	3.4.1	FMEA FOR TRANSMISSION SUBSYSTEM	24
	3.4.2	FMEA FOR HYDRAULIC DUMPING SUBSYSTEM OF A MINE HAULAGE TH 28	₹UCK
	3.4.3	FAULT TREE ANALYSIS (FTA)	33
	3.4.4	FAULT TREES FOR THE TRANSMISSION AND HYDRAULIC DUMPING SUBSYSTEMS	
	3.5 DH 41	EVELOPING A RELIABILITY-BASED PROGRAM FOR MAINTENANCE ACTIV	TIES
	3.5.1	PROCEDURE USED	41
	3.5.2	FAILURE RATE FUNCTION	42
	3.5.3	RELIABILITY	44
	3.5.4 MAINT	RELIABILITY PLOTS USED TO DETERMINE THE INTERVALS OF TENANCE	46
	3.5.5	COST ANALYSIS	48
4	RESUL	TS	52
	4.1 DH	ECOMPOSITION OF THE EQUIPMENT	52
	4.2 RE	ELIABILITY STATISTICAL ANALYSIS RESULTS	52
	4.2.1	INTRODUCTION	52
	4.2.2	TREND TESTS	53
	4.2.3	SERIAL CORRELATION TEST	53
	4.2.4	DISTRIBUTION ESTIMATION	

	4.2	.5 FMEA AND FTA	53
	4.3	DISCUSSIONS	53
	4.4	CONCLUSIONS	54
	4.5	RECOMMENDATIONS	55
	4.6	LIMITATIONS	55
I	Reference	ces	57

LIST OF FIGURES.

Figure 1 images for mine haulage trucks used Namekara vermiculite mine	3
Figure 2 conceptual scope	5
Figure 3 bath tab curve	2
Figure 4 bar chart showing subsystem failure frequencies of trucks	11
Figure 5 trend plot for the transmission subsystem	14
Figure 6 trend plot for the hydraulic dumping subsystem	15
Figure 7 trend plot for the chassis/body	15
Figure 8 serial correlation plot for the transmission	16
Figure 9 serial correlation plot for the hydraulics	16
Figure 10 serial correlation plot for the chassis	17
Figure 11 probability density function graph for the hydraulics	18
Figure 12 probability density function graphs for the transmission	19
Figure 13 probability density graph for the chassis	19
Figure 14 distribution estimation plot for hydraulics	20
Figure 15 distribution estimation charts for the transmission subsystem	21
Figure 16 distribution estimation for the chassis of the truck	21
Figure 17distribution over view plots for the transmission	43
Figure 18 distribution overview plots for the hydraulics	43
Figure 19 distribution over view plot for the chassis	44
Figure 20 reliability plot for the transmission subsystem	46
Figure 21 reliability plot for the hydraulics	47
Figure 22 reliability plot for the chassis	47

Table 1 objectives and tools table	8
Table 2 failure data for the critical subsystems of N6	11
Table 3 failure data for the subsystems of N6	12
Table 4 MTBF and MTTR data for N6	13
Table 5 MTBF and MTTR data for N5	13
Table 6 MTBF and MTTR data for N4	13
Table 7 estimated Weibull parameters	22
Table 8 FMEA table for the transmission subsystem	24
Table 9 FMEA table for the hydraulic dumping subsystem	28
Table 10 FMEA color interpretation table	32
Table 11 FMEA score table	33
Table 12 reliability vs time for the three subsystems	45
Table 13 estimated costs per subsystem	48
Table 14 cost per maintenance interval	49
Table 15 estimated costs per maintenance interval	50
Table 16 intervals f maintenance per reliability level	51

ABREVIATIONS AND SYMBOLS USED

MTTR-	mean time to repair	
MTTF-	mean time to failure	
MTBF-	mean time before failure	
RUL-	remaining useful life	
IID-	Identical and independent distribution	
CFF	cumulative failure frequency	
TBF	time between failure	
TTR	cumulative mean time to repair/restoration	
MLE	maximum likelihood estimation	
N5, N4, 1	N6- different haulage truck IDs used at the mine	
RCM	Reliability centered maintenance	
СМ	Corrective maintenance	
MAD	Mean Absolute Deviation	
MAPE	Mean Absolute Percentage Error	
MSD	Mean Square Error	
IQR	Inter Quartile Range	
AD	Absolute Deviation.	
cdf- cumulative distribution function		
β- Weibull shape parameter		
λ- Weibull scale parameter		
t- time consideration		
pdf-probability distribution function		

 μ – Weibull location parameter

1 CHAPTER ONE

This chapter entails the background to the study, statement of the problem, justification, objectives of the study, scope of the study (both conceptual, geographic and time scopes), significance of the study and conceptual diagram.

1.1 BACKGROUND

Mining is known to be one of the major causes of civilization due to the use of different minerals in the manufacturing and processing industry as a result of technological change. The increase in production of some minerals such as copper, iron, gold, silver, tin and also some industrial minerals such as graphite, limestone, vermiculite, phosphates and graphite has led to a continuous increase in economic development. The production of minerals mostly depends on the investment capital in the industry, also the rate at which the mining machinery are being utilized or the efficiency and availability of the equipment to perform the work as required which affect the production rates of the mine(Equipment, 2017). Mining machinery break downs contribute to a major cause of downtime in mines since the equipment won't be available for work as required by the mining company(Work and Production, 2014). This greatly reduces the companies' revenues since mining is one of the highly expensive businesses to start and run. The change in performance/decrease in equipment's availability and reliability not only reduces the company's daily production but also reduces the company's revenues(Kahraman, 2018). The direct loss in revenue due to reduced output of the mine and also due to salary wages for example machine operators' wages and increased maintenance costs(Todinov, 2006).

This thesis aims at looking at the various causes of machine break downs as well as both the planned and unplanned downtime stoppages to come up with a proper management and preventive maintenance plan that will look most at optimizing the costs associated with production breakdowns and also analyzing the available maintenance plane to reduce the occurrence of unplanned breakdowns during the work shifts as well as increasing machinery availability. Mining equipment availability is the duration a mine machinery of equipment is available when it matters. The change in this time or a reduction in the equipment's uptime reduces the number of cycles or the required production of the mine(Galatia, 2020). Neglecting the small reductions in machine uptime have a huge impact on the company revenues since the hourly cost of production cannot reduce as long as the mine in under operation. It is there important to look at the both the waiting and operator/mechanics cost to come up with a proper maintenance plan that will look into detail the optimization of the maintenance team for proper utilization and allocation of the maintenance team.

Be it in a manufacturing or mining company, unplanned production downtimes are a growing bane that is affecting the overall productivity and operational efficiency. To counter this, mining companies are beginning to appreciate the benefits that the digital tools and technologies have brought in reducing their production downtime(Geitner, no date)(Antgren and Brännström, 2022). However automated mining machinery are expensive, this makes it difficult for an economy whose mining industry is at its infancy stages. A work force productivity platform can identify

References

Abdel-Aziz, I. and Helal, M. (2012) 'Application of Fmea-Fta in Reliability-Centered Maintenance Planning', *The International Conference on Applied Mechanics and Mechanical Engineering*, 15(15), pp. 1–11. Available at: https://doi.org/10.21608/amme.2012.37083.

Aboura, K., Agbinya, J.I. and Eskandarian, A. (2014) 'Weibull Decision Support Systems in Maintenance', *Organizacija*, 47(2), pp. 81–89. Available at: https://doi.org/10.2478/orga-2014-0008.

Alvi, A. (1997) 'ScholarWorks at WMU'.

Antgren, A. and Brännström, A.L. (2022) 'Classifying Downtime Events for Connected Factories Using Machine Learning'.

Cheng, Y.-L. *et al.* (2016) 'We are IntechOpen , the world 's leading publisher of Open Access books Built by scientists , for scientists TOP 1 %', *Intech*, 11(tourism), p. 13.

Dhillon, B. (2006) 'Corrective and Preventive Maintenance', *Maintainability, Maintenance, and Reliability for Engineers*, pp. 143–160. Available at: https://doi.org/10.1201/9781420006780.ch12.

Engineering, F. (no date) 'Why Take a Preventive Approach?'

Equipment, U.O. (no date) No Title.

Fu, Y. (2022) 'Electrical Line Fault Detection and Line Cut-Off Equipment and Control', *Journal of Control Science and Engineering*, 2022. Available at: https://doi.org/10.1155/2022/3857938.

Galatia, D. (2020) 'Exploring Factors that Affect Reliability of Open Pit Heavy Mining Dump Trucks : A Case of Bisha Mining Share Company, Eritrea', 9(6), pp. 206–219. Available at: https://doi.org/10.21275/SR20528131656.

Geitner, F.K. (no date) Machinery Failure Analysis and Troubleshooting.

Javadnejad, F. *et al.* (2022) 'Optimization Model for Maintenance Planning of Loading Equipment in Open Pit Mines', *European Journal of Engineering and Technology Research*, 7(5), pp. 94–101. Available at: https://doi.org/10.24018/ejeng.2022.7.5.2907.

Jia Huang, J.-X.Y. (2010) 'No TitleFailure mode and effect analysis improvement', *No TitleFailure mode and effect analysis improvement* [Preprint].

Kahraman, A. (2018) 'ThinkIR : The University of Louisville 's Institutional Repository'.

Kovalev, V. *et al.* (2014) 'Preventive maintenance of mining equipment based on identification of its actual technical state', *Taishan Academic Forum - Project on Mine Disaster Prevention and Control*, pp. 184–189. Available at: https://doi.org/10.2991/mining-14.2014.29.

Kuzin, E., Bakin, V. and Dubinkin, D. (2018) 'Mining Equipment Technical Condition Monitoring', *E3S Web of Conferences*, 41, pp. 0–5. Available at: https://doi.org/10.1051/e3sconf/20184103020.

Lai, C. (no date) Generalized Weibull Distributions.

Management, A. (2017) 'III. Current State of the Assets', pp. 1–5.

Milod Zakaria Ahmed and Ali, H.M. (2022) 'International Conference on ELECOM', in *Estimation of Weibull Distribution Parameters by Using Excel Solver Tool for Wind Speed Data at Al-Aziziyah, Libya*. Mauritius, p. 44. Available at: https://doi.org/https://doi.org/10.1109/ELECOM54934.2022.9965234.

Palmer, R.D. (2019) *Maintenance Planning and Scheduling Handbook*. 4th Editio. New York: McGraw-Hill Education.

Pandey, R. and Kumari, N. (2018) 'Bayesian Analysis of Power Generalized Weibull Distribution', *International Journal of Applied and Computational Mathematics*, 4(6). Available at: https://doi.org/10.1007/s40819-018-0573-z.

Ramachandran, S. and Amirthalingam, V. (2020) 'Optimisation of pavement maintenance scheduling using transition matrices', *Infrastructure Asset Management*, 7(1), pp. 2–14. Available at: https://doi.org/10.1680/jinam.18.00003.

Rastegari, A. et al. (2017) Condition Based Maintenance in the Manufacturing Industry : From Strategy to Implementation.

Razali, M.N. *et al.* (2020) 'Big data analytics for predictive maintenance in maintenance management', *Property Management*, pp. 513–529. Available at: https://doi.org/10.1108/PM-12-2019-0070.

Silva, R.O. and Pozo, H. (2017) 'Weibull Distribution: Reliability Centered Maintenance and the Use of Bayesian networks', *Asian Journal of Applied Sciences*, 05(05), pp. 2321–0893.

Snee, R. (2016) 'Failure Modes and Effects Analysis', Failure Modes and Effects Analysis, p. 6.

Soewardi, H. and Wulandari, S.A. (2019) 'Analysis of Machine Maintenance Processes by using FMEA Method in the Sugar Industry', *IOP Conference Series: Materials Science and Engineering*, 528(1), pp. 0–7. Available at: https://doi.org/10.1088/1757-899X/528/1/012023.

Systems, S. (no date) 'Basic Concepts on Probability'.

Todinov, M.T. (2006) 'Reliability value analysis of complex production systems based on the losses from failures', *International Journal of Quality and Reliability Management*, 23(6), pp. 696–718. Available at: https://doi.org/10.1108/02656710610672498.

Wang, Z. *et al.* (2022) 'An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System', *Energies*, 15(5), pp. 1–25. Available at: https://doi.org/10.3390/en15051858.

Work, M.T. and Production, I. (no date) 'Downtime cost and Reduction analysis : Survey results', pp. 1–78.

Works, H.I. (2022) 'Fault Detection Base d on Ar tificial Intelligence', (December), pp. 15-16.

Zhao, B. *et al.* (2018) 'Determining optimal preventive maintenance interval for component of Well Barrier Element in an Oil & Gas Company Determining optimal preventive maintenance interval for component of Well Barrier Element in an Oil & Gas Company'. Available at: https://doi.org/10.1088/1757-899X/337/1/012066.