

P.O. Box 236, Tororo, Uganda Gen: +256 - 45 444 8838 Fax: +256 - 45 4436517 Email: info@adm.busitema.ac.ug

www.busitema.ac.ug

FACULTY OF ENGINEERING

DEPARTMENT OF AGRICULTURAL MECHANISATION AND IRRIGATION ENGINEERING

DESIGN AND FABRICATION OF AN IMPROVED FORAGE CHOPPER

BYADONG DIANA

BU/UG/2016/3

EMAIL:adongdiana256@gmail.com

CONTACT: 0786962721/0751063818 SUPERVISOR: MR. OBETI GRISM LAWRENCE

A final year project report submitted in partial fulfilment of the requirements for the award of the BSc. In Agricultural Mechanisation and Irrigation Engineering, December 2020.

ABSTRACT

Uganda is an agricultural country and its livestock sector contributes about 30% of the national Agriculture Gross Domestic Product (GDP) in the form of milk and meat and is a source of livelihood to about 4.5 million people living in the country (UIA, 2009).

Animal feeding is a very important factor regarding animal husbandry and natural forage or pasture provides over 90% of the feed requirements for ruminant livestock (Sarwatt and Mollel, 2013). Forage is plant material (mainly plant leaves and stems) eaten by livestock. In most areas forage is fed to animals by providing it in form of whole crop. By doing this, a lot of forage is wasted and it also affects the digestion system of animals therefore for the complete utilization of forage, we need to cut the forage into small pieces with the help of a forage cutter.(Mustafa, 2016). Also through chopping, different grass varieties can be mixed together which increases on the palatability of the feeds. But most importantly, excess pasture grown during the rainy season has to be chopped and preserved in form of hay or silage which is the conserved green fodder having moisture content in the range of 65 to 70% (Anand, 2017) to await scarcity like during the dry seasons and this can be achieved using a mechanical device known as a forage chopper.

Conceptualization of the machine involved two inter-related units; the feeding unit and the cutting unit. Different components of the machine were designed basing on the physical, mechanical and chemical properties of the forage, the components include; the feed hopper, feed rollers, blade shaft and roller shafts, main frame, driving mechanism and analyzing forces acting on the components to prevent failure. From the designs, cutting unit operates at a speed of 1050rpm and the feeding unit at a speed of 350rpm with a total maximum transmitted power requirement of 4HP after fabrication, the performance and economic analysis of the machine were performed in terms of chopping efficiency of 78.4%. Machine's total cost; Ugx.1.125M, and its Net present value is 4,232282, and since its greater than 0, the project is viable, Owing to the performance and economic analysis of the machine, it achieves all its design purposes hence it is recommended for commercialization and adoption by the target groups.

DECLARATION

I, ADONG DIANA, hereby declare to the best of my knowledge that this report is an outcome of my own work and has not been presented for any academic award in my university, college or higher institution of learning. Throughout the work I have acknowledged all other sources in its compilation.

Signature.....

ADONG DIANA.

APPROVAL

This project is submitted to the Faculty of Engineering for examination with approval of my supervisors and the contents are satisfactory for the award of the degree

Supervisor

MR. OBETI GRISM LAWRENCE

Signature..... Date.....

ACKNOWLEDGMENT

Sincere thanks go to the Almighty God for the wisdom, knowledge, grace, mercy, and protection He has given me and also to my parents, brothers, sisters, relatives, classmates and friends who have assisted me through guidance and support.

I also extend my gratitude to all my lecturers at Busitema University who have equipped me with academic knowledge that has enabled me to succeed in my studies.

ACKNOWLEDGMENT

Sincere thanks go to the Almighty God for the wisdom, knowledge, grace, mercy, and protection He has given me and also to my parents, brothers, sisters, relatives, classmates and friends who have assisted me through guidance and support.

I also extend my gratitude to all my lecturers at Busitema University who have equipped me with academic knowledge that has enabled me to succeed in my studies.

DEDICATION

I dedicate this report to my grandmother Rose Otuko, my uncles Akona Jolly Joe and Bala Moses who have raised me up, given me financial assistance, parental guidance, cancelling and encouragement in all my academic endeavors.

I also dedicate this report to my sponsors of Lindner Foundation Uganda who helped me financially during my early stages of education.

TABLE OF CONTENTS

ABSTRACT		2	
DECLARATION			
			ACI
ACI	ACKNOWLEDGMENT DEDICATION TABLE OF FIGURES		
DEI			
TAF			
CHA	APTER ONE: INTRODUCTION	11	
1.1	BACKGROUND OF STUDY	11	
1.2	PROBLEM STATEMENT	12	
1.3	OBJECTIVES OF STUDY	12	
1.4	JUSTIFICATION	13	
1.5	SCOPE OF STUDY	13	
CHA	APTER TWO: LITERATURE REVIEW	14	
2.1 FORAGE PRODUCTION AND MANAGEMENT IN UGANDA		14	
TAF	BLE 2.1: RECOMMENDED FORAGE SPECIES IN UGANDA	15	
2.2	FORAGE CHOPPING	15	
2.3	METHODS OF CHOPPING FORAGE	17	
2.3.	1 MANUAL FORAGE CHOPPING BY HANDS USING SIMPLE TOOLS	17	
1.3.2	2 MECHANICAL CHOPPING USING MANUALLY OPERATED MACHINE	18	
2.2.4	4 MECHANICAL CHOPPING BY MOTORISED AND ENGINE POWERED MA	CHINE	
		19	
CHA	APTER THREE: METHODOLOGY	22	
3.1	DESIGN CONSIDERATIONS	22	
3.2]	DESIGN PARAMETERS	22	
3.4 (COMPONENTS OF THE MACHINE	24	
3.5	DESIGN OF DIFFERENT COMPONENTS OF THE MACHINE	26	
3.5.	1 THE HOPPER	26	
3.5.2	2 DESIGN FOR THE POWER REQUIREMENT	27	
3.5.3	3 DESIGN OF THE TRANSMISSION SYSTEM	28	

3.5.4 DESIGN OF FEED ROLLERS	30
3.5.5 DESIGN OF THE SHAFT	31
3.5.6 DESIGN OF CUTTING BLADES	32
3.5.7 BEARING SELECTION	33
3.5.8 DESIGN OF THE FRAME	33
3.6 PROTOTYPE FABRICATION ASSEMBLY	34
3.6.1 MATERIAL SELECTION	34
3.6.2 FABRICATION OF THE PROTOTYPE	35
3.6.3 ASSEMBLY AND JOINING PROCESS	36
3.7 TESTING THE PERFORMANCE AND EFFICIENCY OF THE MACHINE	36
3.8 CARRYING OUT ECONOMIC EVALUATION OF THE PROTOTYPE	37
CHAPTER FOUR: RESULTS AND DISCUSSIONS	38
4.1 DESIGN CALCULATIONS FOR THE MACHINE COMPONENTS	38
4.2 FABRICATION AND ASSEMBLY OF MACHINE COMPONENTS	51
4.3 PERFORMANCE EVALUATION OF THE MACHINE	55
4.4 ECONOMIC EVALUATION OF THE MACHINE	57
CHAPTER FIVE CONCLUSION AND RECOMMENDATIONS	60
APPENDIX	61
REFERENCES	64
	65

TABLE OF FIGURES

Figure 1: Napier grass	. 15
Figure 2: Guinea grass	. 15
Figure 3: Farmer chopping Napier grass using a panga	. 17
Figure 4: A hand operated forage chopper	. 18
Figure 5:A manually operated fly wheel forage cutter	. 19
Figure 6: A motorized and an engine operated forage chopper	. 20
Figure 7: Injury cases of forage choppers	. 21
Figure 8: A graph showing injury cases(Ch et al., 2017)	. 21
Figure 9: The operational sequence of the designed forage chopper	. 23
Figure 10; showing diagram of the proposed machine	. 24
Figure 11: Hopper design	. 26
Figure 12: shows pulley-belt arrangement	. 29
Figure 13: Feed roller arrangement	. 30
Figure 14: Cutting blade dimensions	. 32
Figure 15: shows the speed power capabilities for leather v-belt	. 44
Figure 16: Dimensioned forage chopper	. 54