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Abstract
This thesis discusses the extreme points of the Vandermonde determinant on various surfaces, 
their applications in numerical approximation, random matrix theory and financial mathematics. 
Some mathematical models that employ these extreme points such as curve fitting, data smoothing, 
experimental design, electrostatics, risk control in finance and method for finding the extreme points on 
certain surfaces are demonstrated.

The first chapter introduces the theoretical background necessary for later chapters. We review the 
historical background of the Vandermonde matrix and its determinant, some of its properties that make 
it more applicable to symmetric polynomials, classical orthogonal polynomials and random matrices.

The second chapter discusses the construction of the generalized Vandermonde interpolation 
polynomial based on divided differences. We explore further, the concept of weighted Fekete points and 
their connection to zeros of the classical orthogonal polynomials as stable interpolation points.

The third chapter discusses some extended results on optimizing the Vandermonde determinant on 
a few different surfaces defined by univariate polynomials. The coordinates of the extreme points are 
shown to be given as roots of univariate polynomials.

The fourth chapter describes the symmetric group properties of the extreme points of Vandermonde 
and Schur polynomials as well as application of these extreme points in curve fitting.

The fifth chapter discusses the extreme points of Vandermonde determinant to number of mathematical 
models in random matrix theory where the joint eigenvalue probability density distribution of a Wishart 
matrix when optimized over surfaces implicitly defined by univariate polynomials.

The sixth chapter examines some properties of the extreme points of the joint eigenvalue probability 
density distribution of the Wishart matrix and application of such in computation of the condition 
numbers of the Vandermonde and Wishart matrices.

The seventh chapter establishes a connection between the extreme points of Vandermonde determinants 
and minimizing risk measures in financial mathematics. We illustrate this with an application to optimal 
portfolio selection.

The eighth chapter discusses the extension of the Wishart probability distributions in higher dimension 
based on the symmetric cones in Jordan algebras. The symmetric cones form a basis for the construction 
of the degenerate and non-degenerate Wishart distributions.

The ninth chapter demonstrates the connection between the extreme points of the Vandermonde 
determinant and Wishart joint eigenvalue probability distributions in higher dimension based on the 
boundary points of the symmetric cones in Jordan algebras that occur in both the discrete and continuous 
part of the Gindikin set.
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time, efforts and constructive suggestions throughout the various academic discussions we
had. I truly learned a lot in all these discussions that I will take with me to wherever
I go all over this globe. On the whole you exhibited a special substance of a genius
having convincingly guided and encouraged me to undertake and accomplish the right
thing even when the road seemed tough. Without your persistent guidance, the goal of
this research project would not have been achieved. In the same spirit I wholeheartedly
appreciate my other co-supervisors who included Dr. Milica Rančić, Assoc. Prof. John
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time, efforts and constructive suggestions throughout the various academic discussions we
had. I truly learned a lot in all these discussions that I will take with me to wherever
I go all over this globe. On the whole you exhibited a special substance of a genius
having convincingly guided and encouraged me to undertake and accomplish the right
thing even when the road seemed tough. Without your persistent guidance, the goal of
this research project would not have been achieved. In the same spirit I wholeheartedly
appreciate my other co-supervisors who included Dr. Milica Rančić, Assoc. Prof. John
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Popular Science Summary

Mathematics, naturals sciences and technology are strongly interrelated both in theory and
practice. Mathematical theories like analysis, geometry and algebra are all crucial compo-
nents of mathematical models in many applications. Mathematical models are mainly ap-
plied in natural sciences that include physics, biology, earth-science and chemistry, and in
technological disciplines including computer science and telecommunication engineering,
electrical, mechanical and chemical engineering, as well as in the social-economic science
disciplines that include economics, finance, operations research, psychology, sociology
and political sciences. The most important thing to note is that a wide variety mathemat-
ical models whether linear or non-linear, static or dynamic, explicit or implicit, discrete
or continuous, deterministic or stochastic (or probabilistic), strategic or non-strategic and
deductive or inductive as used in various science disciplines can all be constructed based
on the concept of matrix theory.

In this thesis a special matrix called the Vandermonde matrix is our main focus in
studying certain mathematical models in numerical analysis, random matrix theory and
random field based on optimization the Vandermonde determinant. Here, mathematical
optimization a mathematical programming principle mainly refers to the systematic crite-
ria of selection of a best optimal (or extreme) elements, from some set of available large
field of alternative points represented in a matrix form and such elements should maximize
or minimize the determinant of the same matrix.

Most mathematical models are characterized by the phenomenon of well–posedness
whereby, for example, according to Jacques Hadamard a mathematical model of physical
phenomenon is said to be well-posed problem if it has the properties that the solution
exists, the solution is unique and the solution’s behaviour changes continuously with the
initial conditions. In continuum models that must often require to be discretized in order
to obtain a numerical solution, whereas the solutions may be continuous with respect to
the initial conditions, they may suffer from numerical instability when solved with finite
precision, or with errors in the data. Much as the problem may be well–posed, it may still
suffer to be ill–conditioned,due to the fact that a small error in the initial data can result in
even much larger errors in the final solution. This fact of stability of solutions inspired our
study of the Vandermonde matrix and optimization of its determinant a technique that is
highly employed in error control for ill-conditioned problem and also indicated by a large
condition number.

The study of extreme points of Vandermonde determinant and conditioning inspired
us to extend the results to investigate such systems including Coulomb’s system and en-
ergy level spacing for heavy nuclear atoms which are characterised by joint eigenvalue
distribution also called ensembles that occur mainly in random matrix theory and random

9

Popular Science Summary

Mathematics, naturals sciences and technology are strongly interrelated both in theory and
practice. Mathematical theories like analysis, geometry and algebra are all crucial compo-
nents of mathematical models in many applications. Mathematical models are mainly ap-
plied in natural sciences that include physics, biology, earth-science and chemistry, and in
technological disciplines including computer science and telecommunication engineering,
electrical, mechanical and chemical engineering, as well as in the social-economic science
disciplines that include economics, finance, operations research, psychology, sociology
and political sciences. The most important thing to note is that a wide variety mathemat-
ical models whether linear or non-linear, static or dynamic, explicit or implicit, discrete
or continuous, deterministic or stochastic (or probabilistic), strategic or non-strategic and
deductive or inductive as used in various science disciplines can all be constructed based
on the concept of matrix theory.

In this thesis a special matrix called the Vandermonde matrix is our main focus in
studying certain mathematical models in numerical analysis, random matrix theory and
random field based on optimization the Vandermonde determinant. Here, mathematical
optimization a mathematical programming principle mainly refers to the systematic crite-
ria of selection of a best optimal (or extreme) elements, from some set of available large
field of alternative points represented in a matrix form and such elements should maximize
or minimize the determinant of the same matrix.

Most mathematical models are characterized by the phenomenon of well–posedness
whereby, for example, according to Jacques Hadamard a mathematical model of physical
phenomenon is said to be well-posed problem if it has the properties that the solution
exists, the solution is unique and the solution’s behaviour changes continuously with the
initial conditions. In continuum models that must often require to be discretized in order
to obtain a numerical solution, whereas the solutions may be continuous with respect to
the initial conditions, they may suffer from numerical instability when solved with finite
precision, or with errors in the data. Much as the problem may be well–posed, it may still
suffer to be ill–conditioned,due to the fact that a small error in the initial data can result in
even much larger errors in the final solution. This fact of stability of solutions inspired our
study of the Vandermonde matrix and optimization of its determinant a technique that is
highly employed in error control for ill-conditioned problem and also indicated by a large
condition number.

The study of extreme points of Vandermonde determinant and conditioning inspired
us to extend the results to investigate such systems including Coulomb’s system and en-
ergy level spacing for heavy nuclear atoms which are characterised by joint eigenvalue
distribution also called ensembles that occur mainly in random matrix theory and random

9

9



Extreme points of Vandermonde determinant in numerical approximation, random
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fields. These extreme points of the Vandermonde determinant are seen to play a significant
role in both physical and biological science based on the zeros of the classical orthogonal
polynomials, the Gaussian ensembles and the Wishart ensembles in symmetric cones of
Jordan algebras.
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Populärvetenskaplig Sammanfattning

Matematik, naturvetenskap och teknologi är starkt sammankopplade både i teori och prak-
tik. Matematiska områden såsom analys, geometri och algebra är kritiska komponenter
i konstruktionen av matematiska modeller inom många tillämpningsområden. Matema-
tiska modeller används främst i naturvetenskaper såsom fysik, biologi, geovetenskap och
kemi, och inom teknologiska områden såsom datorvetenskap, telekommunikation, elek-
troteknik, mekanik och kemiteknik, men även inom social-ekonomiska områden såsom
ekonomi, finans, operationsanalys, psykologi, sociologi och statsvetenskap. Det som är
viktigast att ha i åtanke är att de flesta matematiska modeller, oavsett om de är linjära eller
icke-linjära, statiska eller dynamiska, explicita eller implicita, diskreta eller kontinuerliga,
deterministiska eller stokastiska (slumpmässiga), strategiska eller ostrategiska, baserade
på deduktion eller induktion, kan alla konstrueras baserat på begrepp från matristeori.

I denna avhandling är en speciell slumpmässig matris som kallas för Vandermondema-
trisen vårt huvudfokus, vi kommer att studera vissa matematiska modeller från numerisk
analys, teorin om slumpmässiga matriser och slumpmässiga kroppar baserat på optimering
av Vandermonde determinanten. Med matematisk optimering menar vi här systematiskt
urval av de mest optimala (eller mest extrema) element från någon stor kropp av möjliga
punkter som representeras i matrisform på så sätt att dessa element maximerar eller min-
imerar determinanten av samma matris.

De flesta modeller ger problem som kan sägas vara väl-ställda, med detta menas, enligt
t.ex. Jaques Hadamard, att en matematiska modell av ett fysikaliskt fenomen get välställda
problem om problemets lösning existerar, lösningen är entydig och lösningens beteende
ändras kontinuerligt om problemets initialvillkor ändras. I kontinuerliga modeller som
behöver diskretiseras för att kunna behandlas med numeriska metoder, så kan det vara så
att medan lösningen ändras kontinuerligt med avseende på initialvillkoren, så introducerar
begränsningar i numerisk precision instabilitet i lösningen. På liknande sätt kan fel i data
introducera instabilitet. Stabiliteten av lösningar inspirerade vår undersökning av Vander-
mondematrisen och metoder för optimering av dess determinant då detta är relevant för
felkontroll för dålig ställda problem på grund av kopplingar mellan determinanten och
matrisen konditionstal.

Studien av extrempunkter hos Vandermondedeterminanten och kondition insperade vi-
dare undersökning av systems såsom Coulombs system och avstånd mellan energinivåer
för tunga kärnpartiklar vilka beskrivs av egenvärdena för en typ av multivariat distribution
som kallas för en ensemble och som ofta dyker upp i teorin för slumpmässiga matriser
och slumpmässiga kroppar. Extrempunkterna för Vandermondedeterminanten kan beskri-
vas med hjälp av nollställena till klassiska ortogonala polynom för den Gauss-ensemblen,
Wishart-esemblen samt ensembler i den symmetriska konen av Jordan-algebror.
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viktigast att ha i åtanke är att de flesta matematiska modeller, oavsett om de är linjära eller
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Paper G. Muhumuza Asaph K., Lundengård Karl, Malyarenko Anatoliy, Silvestrov Sergei, Mango
John M., Kakuba Godwin, (2019). The Wishart Distribution on Symmetric Cones. Accepted
for publication in: Silvestrov S., Malyalenko A., Rančić M., (Eds.), SPAS2019. Algebraic
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Notations

The following notations will be used throughout the Thesis unless defined otherwise.

N,Z,R,C – The set of Natural, Integers, Real and Complex numbers.
x,v – Bold, roman lower letters denote vectors.
X,V,M – Bold, uppercase letters denote matrices.
δ – The index δ = (n−1, . . . ,2,1,0), unless stated otherwise.
λ – The partition λ = (λ1, . . . ,λn), unless stated otherwise.
Ci, j,Mi, j – Element on the i–th row and j–th column of M.
M·, j – Column vector of all elements from the j–th column of M.
Mi,· – Row vector of all elements from the i–th row of M.
[ai j]

nm – i j – n×m matrix with element ai j in the i–th row and j–th column.
Vnm(x) – n×m – Vandermonde matrix with respect to x ∈ Rn.
V(x) = Vnn(x) – n– square Vandermonde matrix with respect to x ∈ Rn.
det
(
V(x)

)
= vn(x) – Determinant of the n– square Vandermonde matrix.

Vδ (x) = Vn(x) – Vandermonde matrix with respect to index δ and x ∈ Rn.
Vλ+δ (x) – Vandermonde matrix with respect to partition λ and x ∈ Rn.
det
(
Vδ (x)

)
= aλ (x) – Determinant of the Vandermonde matrix with respect to index δ .

det
(
Vλ+δ (x)

)
= aδ+λ (x) – Determinant of the Vandermonde matrix with respect to partition λ .

sλ (x) = aδ+λ (x)/aδ+λ (x) – The Schur polynomial with respect to partition λ .
Ck[K] – The continuous functions with k–th derivative on the field K.

‖x‖p =

(
n

∑
k=1
|xk|p

) 1
p

– The p–norm of x ∈ Rn, where p = 2 is the Euclidean norm.

Sp
n – The n–dimension p–sphere, Sp

n(r) =

{
x ∈ Rn+1 :

n

∑
k=1
|xk|p+1 = rp+1

}
.

‖ · ‖F – The Frobenius–norm where ‖X‖F =

(
m

∑
i=1

n

∑
j=1
|xi j|2

) 1
2

=
√

tr(A>A).

κ(X) = ‖X−1‖‖X‖ – The condition number of X, where X−1 is inverse of X.
Hn(·),P(α,β )

n (·),Ln(x),Pn(·) – The Hermite, Jacobi, Legendre and Laguerre orthogonal polynomials.
Γ(x),β (·) – The Gamma and Beta functions, Γ(α) = (α−1)!, β (a,b) = Γ(a+b)

Γ(a)Γ(b) .

2F2(a,b;c;x) – The hypergeometric function.
dk f
dxk = f (k)(x) – The k–th derivative of the function f with respect to x.

∂ n f
∂xn = f (n)(x) – The n–th partial derivative of the function f with respect to x.

P(A) – The probability of event A.
E(X),Var(x) =V (X) – The expectation and variance of random variable X respectively.
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Applications, SPAS 2019. Springer Proceedings in Mathematics & Statistics 2019.
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Paper F. Muhumuza Asaph K., Lundengård Karl, Malyarenko Anatoliy, Silvestrov Sergei, Mango
John M., Kakuba Godwin, (2019). Connections Between the Extreme Points of Vander-
monde determinants and minimizing risk measure in financial mathematics. Accepted for
publication in: Silvestrov S., Malyalenko A., Rančić M., (Eds.), (Eds.), SPAS2019. Al-
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Paper G. Muhumuza Asaph K., Lundengård Karl, Malyarenko Anatoliy, Silvestrov Sergei, Mango
John M., Kakuba Godwin, (2019). The Wishart Distribution on Symmetric Cones. Accepted
for publication in: Silvestrov S., Malyalenko A., Rančić M., (Eds.), SPAS2019. Algebraic
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Chapter 1

Introduction

The main fields discussed in this thesis include finding the extreme points of the Vandermonde
determinant and their applications in both numerical computations, approximation and random
fields. Several of the techniques and approaches that are explored are also applied to multivariate
interpolation, random matrix theory and construction of Wishart ensembles using Symmetric cones
in Jordan algebras. An overview of the major relations between the different parts of the thesis
are illustrated in Figure 1.1. The relations are of many forms including important definitions,
dependent results, and conceptual connections. In addition, similarities in proofs and mathematical
techniques based on problem formulations will be discussed.

This thesis is based on the eight papers listed on pages 13 and 14, that is, Paper A, Paper B,
Paper C, Paper D, Paper E, Paper F , Paper G and Paper H. The contents of the papers especially
the introductory parts have been transferred to the main introduction, rearranged and/or in some
cases parts have been omitted to avoid repetition and improve coherence. Generally, the original
text and structure of the papers have been preserved.

Chapter 1 gives the general introduction of the major concepts to be used in the later chapters.
The historic background of the Vandermonde matrix and its determinant, the structure and defini-
tion of Vandermonde matrix, Vandermonde determinant, generalized Vandermonde matrix, general
properties of Vandermonde matrix and its determinant. These properties makes both the Vander-
monde matrix and Vandermonde determinant more applicable in both scientific and mathematical
computations. Section 1.1 outlines some relationships with other determinants while Section 1.2
is devoted to the group properties of the matrix and its Vandermonde determinant based on the
symmetric polynomial, Schur polynomials and orthogonal polynomials, and how such are helpful
in decomposition of Vandermonde matrix, Cauchy matrix, Hankel matrix and Toeplitz matrix.

Section 1.3 is concerned with the determinantal representation of orthogonal polynomials, the
Vandermonde determinant and Christofell–Darboux formula. The classical orthogonal polynomi-
als which include the Hermite, Laguerre, Jacobi and Legendre polynomials.

Section 1.4 introduces some of the occurrences and applications of the Vandermonde matrix
and its determinant which include polynomials curve fitting, divided differences, regression analy-
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sis, D-optimal experiment design and solutions of differential equation.
Section 1.5 discusses the applications of the Vandermonde matrix and its determinant in Ran-

dom Matrix Theory (RMT), Gaussian ensembles, Wishart ensembles, distribution level spacing and
the significance of the Vandermonde determinant in characterisation of certain systems including
Coulombian interaction, distribution of electrical charges, sphere packing and Coulomb gas.

Section 1.6 introduces the Vandermonde determinant into Jordan algebras, Symmetric cones
and random fields thus gives the general overview on Euclidean Jordan Algebras, the cone of pos-
itive definite symmetric matrices, properties and examples of Jordan algebras, classification of ir-
reducible symmetric cones, trace, determinant and minimum polynomials on symmetric cones and
the Laplace transform, special functions defined on Symmetric cones and the Wishart distribution
on symmetric cones.

Section 1.7 highlights the occurrence of the Vandermonde matrix and its determinant in fi-
nancial models that include money market accounts, derivatives and arbitrage pricing, derivative
securities, options and many other optimization models in finance.

Chapter 2 discusses the general expression of divided differences using the generalized Van-
dermonde determinant. Section 2.1 describes the generalized divided differences, Section 2.2 in-
troduces the weighted Fekete points and Section 2.3 gives the weighted Lebesgue constant and
Lebesgue function as applies to error analysis in interpolation. Section 2.4 applies these concepts
in establishing the connects the Gaussian orthogonal ensembles while Section 2.5 gives curve fit-
ting criteria using the zeros of the Jacobi, Laguerre and Hermite polynomials.

Chapter 3 explores the extreme points of the Vandermonde determinant in higher dimension
motivated by results of optimization of Vandermonde determinant by Lagrange multiplier ex-
plained in [305]. Section 3.1 discusses extreme points of the Vandermonde determinant on surfaces
defined by a low degree univariate polynomials, Section 3.1.1 critical points on surfaces given by
a first degree univariate polynomial, Section 3.1.2 critical points on surfaces given by a second de-
gree univariate polynomial, Section 3.2 critical points on the sphere defined by a p-norm in which
higher degree univariate polynomials are computed, and Section 3.3 extends the results of extreme
points of Vandermonde determinants to cubes and intersections of planes.

Chapter 4 studies symmetric group properties of extreme points of Vandermonde determinant
and Schur polynomials based on symmetric group properties of polynomial rings. Section 4.1
highlights the symmetric group properties of Vandermonde Matrix and its determinant, Section 4.2
gives the derivatives, extreme points of Vandermonde determinants and Schur polynomials, Section
4.3 discusses the extreme points of Schur Polynomial on certain surfaces and based on classical
orthogonal polynomial. Section 4.4 extends the extreme points of generalized Vandermonde deter-
minant and Schur polynomial to the Szegö Limit Theorems, and Section 4.5 gives the application
of extreme points of Vandermonde determinant in interpolation with symmetric polynomials and
Schur polynomials.

Chapter 5 discusses the optimization of the Wishart joint eigenvalue probability density distri-
bution based on the Vandermonde determinant by use of the classical Lagrange multiplier. Section
5.1 describes optimization of the Vandermonde determinant and joint eigenvalue probability densi-
ties on certain surfaces. Section 5.2 gives an illustration of extremes the joint eigenvalue probability
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density function on a p-sphere.
Chapter 6 studies the properties of the extreme points of the Joint Eigenvalue Probability Den-

sity Function of the Wishart type matrices based on the condition number of both the Vandermonde
matrix and Wishart type matrices. Section 6.1 outlines polynomial factorization of the Vander-
monde and Wishart Matrix, Section 6.2 discusses the concept of matrix norm of the Vandermonde
and Wishart Matrices, and Section 6.3 illustrates evaluation of condition number of the Vander-
monde and Wishart Matrix based on eigenvalues.

Chapter 7 investigates the connections between the extreme points of Vandermonde determi-
nant and minimizing risk measure in financial mathematics. Section 7.1 derives the relevant ex-
pression of financial models while 7.2 demonstrates the concepts of pricing with extreme points
Vandermonde Determinant on an an efficient frontier defined by certain surfaces.

Chapter 8 explores the group properties of the Wishart distribution on symmetric cones in
Jordan algebras based on Vandermonde determinant. Section 8.1 outlines the Wishart Ensembles
on symmetric cones, Section 8.2 gives the Lassalle measure on symmetric cones and probability
distribution, and in Section 8.3 we construct the degenerate and non-degenerate Wishart ensembles
on symmetric cones.

Chapter 9 demonstrates the extreme points of the Vandermonde determinant and Wishart en-
sembles on symmetric cones. Section 9.1 gives the Gindikin set and Wishart joint eigenvalue
distribution, Section 9.2 discusses the Wishart distribution on symmetric cones, Section 9.3 illus-
trates the extreme points of the degenerate and non-degenerate Wishart distribution based on the
Vandermonde determinant.
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Figure 1.1: An illustration of the relationship between thesis sections and chapters.
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Historic Background

1.1 Historic Background
The Vandermonde matrix and its determinant are considered to be a typical example of Stingler’s
law of eponymy [445], “No scientific discovery is named after its original discoverer.” Henri
Lebesgue (1875-1941), who gave a conference presentation, titled: “L’œuvre mathématique de
Vandermonde.” During his conference presentation he made the following assertion as stated in
[293]:

What could have been personal, is the Vandermonde determinant? Yet it is not there,
nor anywhere else in Vandermonde’s work. Why then was Vandermonde’s name
given to that determinant?

Lebesgue’s conjecture downplays his other memoirs, for instance, he states in [293]:

Thus, the Vandermonde determinant is not due to Vandermonde; his theory of de-
terminants is not very original, his notations of factorial is unimportant; his study of
situation geometry is somewhat childish, what is left? What is left is his first Memoir,
about which Cauchy stated ...

The memoir that was referred to as “childish” was the memoir on combinatorics which con-
tained more than just a notation for factorials, that is, the identity(

n
k

)
=

k

∑
j=1

(
m
j

)(
n−m
k− j

)
(1.1)

is presently still referred to as “Vandermonde Theorem or Identity” in most probability and com-
binatorial textbooks, for example, see [412]. Even though referred to as “childish”, the memoir on
situational geometry made Vandermonde to be regarded as a foundation of knot theory as stated in
[384]. Furthermore, it is known that the Vandermonde identity (1.1) was already known in 1303
by the Chinese mathematician Zhu Shijie, [15], and is expressed as(

n1 + · · ·+np

m

)
= ∑

k1+···+kp=m

(
n1

k1

)(
n2

k2

)
· · ·
(

np

kp

)
. (1.2)

where (1.2) is a generalization of (1.1).
The matrix is named after Alexandre Théophile Vandermonde (1735-1796) whose life is char-

acterised by his engagements in the French revolution, he had a varied career interests including
music, mechanic and political economy, and his brief career in mathematics can be obtained in
various literature including [154, 198, 222, 293, 448]. Vandermonde’s career began with law stud-
ies and work as a concert violinist, transitioned into work in both science and mathematics in the
early 1770s. He gradually turned into administrative and leadership positions at various Parisian
institutions as well as work in politics and economics in the end of the 1780s [305]. By the end
of 1980s, the name Vandermonde matrix and determinant had appeared in various research articles
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The matrix is named after Alexandre Théophile Vandermonde (1735-1796) whose life is char-

acterised by his engagements in the French revolution, he had a varied career interests including
music, mechanic and political economy, and his brief career in mathematics can be obtained in
various literature including [154, 198, 222, 293, 448]. Vandermonde’s career began with law stud-
ies and work as a concert violinist, transitioned into work in both science and mathematics in the
early 1770s. He gradually turned into administrative and leadership positions at various Parisian
institutions as well as work in politics and economics in the end of the 1780s [305]. By the end
of 1980s, the name Vandermonde matrix and determinant had appeared in various research articles

27

27



Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

and textbooks, for example, [3, 20, 40, 61, 66, 87, 110, 111, 119, 123, 141, 157, 179, 203, 210,
216, 221, 229, 251, 278, 282, 283, 284, 289, 316, 334, 354, 355, 364, 366, 373, 411, 431, 438, 445,
447, 451, 462, 487, 488, 490] to list but a few.

The Vandermonde notation for the determinant was based on a linear system of equations in

the variables ζ i in the j equation by
j
i so that the system [470],

1
1ζ 1+

1
2ζ 2+

1
3ζ 3+

1
4 = 0,

2
1ζ 1+

2
2ζ 2+

2
3ζ 3+

2
4 = 0,

3
1ζ 1+

3
2ζ 2+

3
3ζ 3+

3
4 = 0,

will have the determinant such as ∣∣∣∣∣∣∣∣∣
1
1

1
2

1
3

2
1

2
2

2
3

3
1

3
2

3
3

∣∣∣∣∣∣∣∣∣
where the upper indices represents the exponents, which would translate to the usual notation Van-
dermonde matrix if the upper indices are taken as a superscripts. The translation of exponents into
indices gave birth to the foundation of Cauchy’s theory of determinants [78, 79]. The same concept
of switching the indices into superscripts had helped Vandermonde himself to the observation that
changing one of the indices of the general determinant into an exponent leads to an alternating
function [470]. This could have been one the key remarks that could have interested Cauchy and
Jacobi in their works, and most probably that could have concretized the naming to Vandermonde
determinant.

After thorough analysis of Cauchy’s two memoirs [78, 79] that were read to the institute on
November 30, 1812 and later published in 1815, T. Muir in his conclusion describes the respective
roles Vandermonde and Cauchy as follows [355]:

On looking back, however, at Cauchy’s memoir as a whole, one cannot but be struck
with admiration both at the quality and the quantity of its contents. Supposing that
none of its theorems had been new, and that it had not even presented a single old
theorem in a fresh light, the memoir would have been most valuable, furnishing, as
it did, to the mathematicians of the time, an almost exhaustive treatise on the theory
of general determinants. It is not too much to say, although it may come to many
as a surprise, that the ordinary text-books of determinants supplied to university stu-
dents of the present day do not contain much more of the general theory than is to
be found in Cauchy’s memoir of about eight years ago. One apparently trivial instru-
ment, which Cauchy had not received from his predecessors and which he did not
make for himself, viz, a notation for determinants whose elements had special values,
is at the foundation of the whole difference between his treatise and those at present
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Historic Background

employed. When this want came to be supplied later on, the functions crept steadily
into every use, and a fresh impetus was consequently given to the study of them. But
if from the work of the said eight years all researches regarding special forms of de-
terminants be left out, and all investigations which ended in mere rediscoveries or in
rehabilitations of old ideas, there is a surprisingly small proportion left. If one bears
this in mind, and recalls the fact, temporarily set aside, that Cauchy, instead of being
a compiler, presented the subject from a perfectly new point of view, added many re-
sults previously not thought of, and opened up a whole avenue of fresh investigation,
one cannot but assign to him the place of honour among all the workers from 1693 to
1812. It is, no doubt, impossible to call him, as some have done, the formal founder
of the theory. This honour is certainly due to Vandermonde, who however, erected on
the foundation comparatively little of a superstructure. Those who followed Vander-
monde contributed, knowingly or unknowingly, only a stone or two, larger or smaller,
to the building. Cauchy, relaid the foundation, rebuilt the whole, and initiated new en-
largements; the result being an edifice which the architects of to-day may still admire
and find worthy of study.

In [81] the concept of determinant has been described using the method of induction, which
in most recent times is referred to as the Laplace’s expansion or formula, [220]. Cauchy’s method
of defining determinant was quite different from the previous methods especially due to Laplace.
According to Cauchy [78]:

Let a1,a2, . . . ,an be several different quantities in number equal to n. It has been
shown that by multiplying the product of the quantities,

a1a2a3 · · ·an

by the product of their respective differences,

(a2−a1)(a3−a1) · · ·(an−a1)(a3−a2) · · ·(an−a2) · · ·(an−an−1).

One obtains the alternating symmetric polynomial

S(±a1a2
2 · · ·an

n),

which, as a consequence, happens to be equal to the product

a1a2a3 · · ·an(a2−a1) · · ·(an−a1)(a3−a2) · · ·(an−a2) · · ·(an−an−1).

Let us suppose now that one develops this later product and that, in each term of the
development, one replaces the exponent of each letter by a second index equal to the
exponent: by writing, for instance, ar,i instead of ai

r and ai,r instead of ar
i . One will
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obtain as a result a new alternating symmetric polynomial which, instead of being
represented by

S(±a1
1a2

2 · · ·an
n),

will be represented by
S(±a1,1a2,2 · · ·an,n).

The sign S being relative to the first indices of each letter. Such is most general
form of the functions that I shall designate in what follows under the same name of
determinant.

To get a better understanding of Cauchy’s argument, there is need to keep in mind that his
major focus was on the functions of n variables defined in [78] which came as a result of his first
memoir [79] where he discussed the functions of n variables that assume less than n! different
values whenever the variables are permuted. He referred to “symmetric alternating functions” as
those functions assuming only two opposite values which also can be simply called alternating
function. Among these polynomials of n variables included the “product of differences” which is
also referred to as difference-product as stated in [355]. This difference product generates a sum of
monomials with alternating signs that mainly depend on the permutations of the variables and their
exponents. The “rule of signs” had already been described by Cauchy before defining determinants
[75, 76, 77, 78, 79, 278].

There are three important polynomial functions of n variables say a1,a2, . . . ,an that are alge-
braically equal but distinct in their formulation as described in detail in [78, 79, 355] these include

• difference-product: ∏
1≤i< j≤n

(a j−ai);

• alternating polynomial: ∑
σ∈Sn

(−1)ε(σ)
n

∏
i=1

aσ(i)−1
i ;

• Vandermonde determinant: det
(

a j
i

)
1≤i< j≤n−1

.

These three functions are expressed in modern notations where Sn is the group of permutations of
the finite set {a1,a2, . . . ,an} onto itself and ε(σ) is the signature or parity given by the number of
inversions of the permutation σ . It should be noted that the group permutations and the signature
as a homomorphism. In the development of the difference product it has been recognized that the
same rule of signs as that of a general determinant allows one to express the idea using [78]

n

∏
i=1

ai ∏
1≤i< j≤n

(a j−ai) = ∑
σ∈Sn

(−1)ε(σ)
n

∏
i=1

aσ(i)−1
i (1.3)

as a general definition by mutating the exponent of each variable into a second index.
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braically equal but distinct in their formulation as described in detail in [78, 79, 355] these include

• difference-product: ∏
1≤i< j≤n

(a j−ai);

• alternating polynomial: ∑
σ∈Sn

(−1)ε(σ)
n

∏
i=1

aσ(i)−1
i ;

• Vandermonde determinant: det
(

a j
i

)
1≤i< j≤n−1

.

These three functions are expressed in modern notations where Sn is the group of permutations of
the finite set {a1,a2, . . . ,an} onto itself and ε(σ) is the signature or parity given by the number of
inversions of the permutation σ . It should be noted that the group permutations and the signature
as a homomorphism. In the development of the difference product it has been recognized that the
same rule of signs as that of a general determinant allows one to express the idea using [78]

n

∏
i=1

ai ∏
1≤i< j≤n

(a j−ai) = ∑
σ∈Sn

(−1)ε(σ)
n

∏
i=1

aσ(i)−1
i (1.3)

as a general definition by mutating the exponent of each variable into a second index.
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Historic Background

The year 1841 was marked by unprecedented development in theory of determinant as clearly
stated in [355]:

Like in the year 1812 the year 1841 merits a chapter to itself, and in 1841 as in
1812, it is the work of only two authors that concern us. Strange to say, however,
the two notable years has an author in common, the writers of 1812 being Binet and
Cauchy, and those of 1841 being Cauchy and Jacobi. In 1841 Jacobi’s contribution
constituted a comprehensive monograph similar to that produced by Cauchy in 1812
and Cauchy’s in 1841, as was to be expected, were more nature of the aftermath.

This general theory of determinant supplemented with the publication in Crelle’s journal of
Jacobi’s monograph, that was split into three papers in which he rebuilds the whole theory and
turning upside down Cauchy’s approach. A brief recount is as exactly outlined in [355]:

While Jacobi was aware, as we have already partly seen, of the labours of Cramer,
Benzout, Vandermonde, Laplace, Gauss, and Binet, his main source of inspiration is
Cauchy. Of all the writers since Cauchy’s time, indeed, he is the first who gives evi-
dence of having read and mastered the famous memoir of 1812. It scarcely needs to be
said, however, that his own individuality and powerful grasp are manifest throughout
the whole exposition.

At the outset, there is reversal of former orders of things; Cramer’s rule of signs for
a permutation and Cauchy’s rule being led up by series of propositions instead of
one them being made a convention or definition. This implies, of course, that a new
definition of a signed permutation is adopted, and that conversely this definition must
have appeared as a deduced theorem in any exposition having either of this rules as
its starting point.

In brief, Cauchy used the approach of difference-products to define the determinant in which he
transformed the exponents used in the Vandermonde determinant into indices, whereas Jacobi used
the approach of first defining positive and negative permutations, and then defined the determinant
as a polynomial carrying the ± coefficient assigned according to the sign of the corresponding
permutation. This Jacobi’s approach to defining the determinant picked up and suppressed the
Cauchy’s approach. On the whole, Cauchy’s approach addressed both pedagogical and mathe-
matical concepts as expressed in his famous 1821 memoir, “Cours d’Analyse”, [77], in which he
recommended the difference-product approach to determinant as a general and suitable method for
solving linear system of equations. He immediately applied his recommendations to Lagrange’s
interpolation problem as described in [77, 78, 79, 137].

In his third memoir published in Crelle’s Journal, Jacobi deals mainly with alternating func-
tions [251]. In response to this, Cauchy responded in 1841, in which he treated the quotients of
alternation functions by difference-product as described in [76]. As a matter of fact, when compar-

ing Cauchy’s method of calculating det
(

1
ai +b j

)
1≤i, j≤n

described in [76] to the modern method
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Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

of calculating the same determinant, it can be confirmed that Cauchy had a point. However, the
name “Cauchy’s determinant” for that particular example is hardly heard of or used outside France,
whereas for the particular case in which ai = i,b j = j−1 is a universally known as “Hilbert matrix”.

Importantly to note also is that one year before 1841, the approach of difference-product to
defining determinant had just been established by James Joseph Sylvester, who without reference
to Cauchy called “zeta-ic multiplication” Cauchy’s operation of transforming the exponents into
indices in a polynomial [451]. Based on this, Muir’s remark on this is quite fascinating [355]:

This early paper, one cannot but observe, has all the characteristics afterwards so
familiar to readers of Sylvester’s writings, fervid imagination, vigorous originality,
bold exuberance of diction, hasty if not contemptuous disregard of historical research,
the outstripping of demonstration of enunciation, and an infective enthusiasm as to
the vistas opened by his own work.

Thus, based on the above brief enlisting, the name Vandermonde matrix or determinant does not
appear in any of the Vandermonde’s research published works, which is not surprising considering
that the modern matrix concept did not really take a definite shape until almost a hundred years later
following the works of Sylvester and Cayley [452]. It is therefore strange that the Vandermonde
matrix was named after him, a thorough discussion on this is found in [2, 355], but a possible
reason is the simple formula for the determinant that Vandermonde briefly discusses in his fourth
paper that can be generalized to a Vandermonde matrix of any size.

Alexandre Théophile Vandermonde (1735-1796) published only four papers in his entire but
rather short mathematical career. Whereas his papers can be said to contain very important ideas of
mathematical concepts, they do not qualify any of them to great scientific maturity and therefore the
very reason he is considered as minor scientist and mathematician, if compared to the well-known
scientists and mathematicians namely Étienne Bézout (1730-1783) and Pirre-Simon de Laplace
(1749-1827) as well as chemist Antoine Lavoisier (1743-1794) that he mainly worked with for
some time after his mathematical career [395].

Vandermonde’s writings can be strongly linked to the Vandermonde matrix or determinant
more especially his “memoir on elimination”, in which in his own words says [470]:

This memoir was read to the Academy for the first time on the 20th of January 1771.
It contained different things that I have suppressed here because they have been pub-
lished since by other Geometers.

Here it is presumed “other geometers” definitely include Laplace’s memoir though posterior [290],
was published in the same volume as Vandermonde. Thus, what Vandermonde exactly suppressed
remains conjectural.

In a similar way like Cauchy in 1812, Vandermonde wrote determinants being defined as a by-
product of symmetric polynomials, especially his memoir on elimination is a sequel to the memoir
on the solution of equations. It should be noted however, the publication dates, 1774 and 1776, are
quite misleading: The first memoir [470] was read to the academy ”sometime in November 1770”,
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Historic Background

that is, just only two months before the second [470]. Presumably, Vandermonde undoubtedly had
the first memoir in mind when he wrote the second, thereby it is important to examine the two as a
whole. Here is a summary of Vandermonde’s four publications.

The first paper [469], “ Mémoire surla résolution de équations,” mainly discusses properties of
the roots of polynomial equations, more in particular the formulas for the sum of the roots and a sum
of symmetric polynomials of the powers of the roots. This paper is considered very important since
it contains some of the fundamental ideas of group theory though this work generally this work is
overshadowed by the works of the contemporary Joseph Louis Lagrange (1736-1813) [285, 286].
As part of the results in his first paper, he notices the most important equality

a2b+b2c+ac2−a2c−ab2−bc2 = (a−b)(a− c)(b− c),

which is a special case of the formula for determinant of the Vandermonde matrix and the corre-
sponding squares as

a4b2 +a4c2 +b4c2 + c4a2 + c4b2−2(a4bc+b4ac+ c4ab)−2(a3b3 +a3c3 +b3c3)

+2(a3b2c+a3c2b+b3a2c+ c3a2b+ c3b2a)−6a2b2c2 = (a−b)2(a− c)2(b− c)2.

It seems that Vandermonde did not understand the significance of these expressions as pointed out
by Stoy Reed Irving [395].

The second paper [468], “Remarques sur des problémes de situation,” mainly discusses the
problem of the knight’s tour (what sequence of moves allows a knight to visit all squares on a
chessboard exactly once). This paper is considered the first mathematical paper that uses the basic
ideas of what is now called knot theory as stated in [59, 352, 354, 355, 356] where it is stated [355]:

Those acquainted with the abbreviated symbols that I have named partial types of
combination, in Memoir on the resolution of equations, will recognize here the for-
mation of the partial type depending on the second degree, for any number of letters;
they will easily see that, by taking our α,β ,γ,δ ,&c., for instance, as exponents, all
terms with equal signs in the development of one of our abbreviations, which also be
the development of the partial type depending on the second degree, & formed with
an equal number of letters.

The third paper [467], ”Mémoire sur des irrationnelles de différent ordres avecune application
all cercles,” is a paper on combinatorics and the most well - known result from the paper is the
Zhu–Vandermonde identity

n

∑
k=1

[(
k

∏
j=1

r+1− j
j

)(
n−k

∏
j=1

s+1− j
j

)]
=

(
n−k

∏
j=1

r+ s+1− j
j

)

where r,s ∈ R and n ∈ Z. This same identity was first discovered by Zhu Shijie in 1303 and was
later rediscovered by Vandermonde [15, 362].
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Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

In the fourth paper [466], “Mémoire sur l’élimination”, in which Vandermonde discusses a
general method for solving linear system using alternating functions, which has strong relation
to determinants. He also notices that exchanging exponents for indices in a class of expressions
from his first paper will give a class of expressions that he discusses in his fourth paper. This
relation is mirrored in the relationship between the determinant of the Vandermonde matrix and the
determinant of a general matrix [505].

In these four main papers of Vandermonde that outlines key of his scientific and mathematical
work can be seen to contain many important ideas but these do not bring any of them to matu-
rity and he is therefore usually considered a minor scientist and mathematician compared to well
known contemporary mathematicians such as Étienne Bézout (1730–1783)[6] and Pierre-Simon de
Laplace (1749–1827) [97] or scientists such as the chemist Antoine Lavoisier (1743–1794)[124]
that he worked with for some time after his mathematical career. The Vandermonde matrix does
not appear in any of Vandermonde’s published works, which is not surprising considering that the
modern matrix concept did not really take shape until almost a hundred years later in the works of
James Joseph Sylvester (1814-1897) [452], Arthur Cayley (1821-1895) [80] and William Rowan
Hamilton (1805-1865)[400]. It is therefore strange and remains a very big point of contention
that the Vandermonde matrix was named after him, a detailed discussion on this can be found in
[352, 354, 355, 356, 505], but a possible reason is the simple formula for the determinant that
Vandermonde briefly discusses in his fourth paper can be generalized to a Vandermonde matrix of
any size. One of the main reasons that the Vandermonde matrix has become known is that it has
an exceptionally simple expression for its determinant that in turn has a surprisingly fundamental
relation to the determinant of a general matrix [305].

The first direct and historic application of the difference-product which is mainly attributed
to Cauchy, other than being a natural way of combining say n variables, it mainly appears in the
Lagrange interpolation problem. The main historical background of interpolation can be got from
[171]. If for instance, (x1,y1),(x2,y2), . . . ,(xn,yn) are the usual Cartesian coordinates representing
the points to be interpolated with Q = a0+a1x+a2x2+ . . .+an−1xn−1 as the unknown polynomial
to be fitted. Then, the coefficients a0,a1,a2, . . . ,an−1 satisfy the system [101]:

a0 +a1x1 +a2x2
1+ . . . +an−1xn−1

1 = y1

a0 +a1x2 +a2x2
2+ . . . +an−1xn−1

2 = y2 (1.4)

· · ·
a0 +a1xn +a2x2

n+ . . . +an−1xn−1
n = yn

If xi’s are assumed to be distinct, the solution is given by the Lagrange interpolation polynomial
[101]:

Q(x) =
n

∑
i=1

yi ∏
i 6= j

x− x j

x j− xi
. (1.5)

It would be really fair that whoever first wrote the linear system (1.4) should have gotten the credit
of discovering the Vandermonde matrix. For instance, the name “Lagrange interpolation” came
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In the fourth paper [466], “Mémoire sur l’élimination”, in which Vandermonde discusses a
general method for solving linear system using alternating functions, which has strong relation
to determinants. He also notices that exchanging exponents for indices in a class of expressions
from his first paper will give a class of expressions that he discusses in his fourth paper. This
relation is mirrored in the relationship between the determinant of the Vandermonde matrix and the
determinant of a general matrix [505].

In these four main papers of Vandermonde that outlines key of his scientific and mathematical
work can be seen to contain many important ideas but these do not bring any of them to matu-
rity and he is therefore usually considered a minor scientist and mathematician compared to well
known contemporary mathematicians such as Étienne Bézout (1730–1783)[6] and Pierre-Simon de
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Historic Background

from one of the famous lessons that Joseph Louis Lagrange (1736-1813) gave at the École Normale
in Paris in 1795 [286]. Indeed, in his lecture, Lagrange did not pretend to expose his research as he
stated:

Newton is the first one who has posed that problem. Here is the solution he gives.

The fact remains that in the Principia Mathematica, Isaac Newton (1642-1727) had described
a method to determine “a curved line of a parabolic which passes through any number of points”
as stated in [366], as what is famously known as Newton’s divided differences method. Isaac
Newton’s major breakthrough came in June 1661, when he was admitted to Trinity College, Cam-
bridge as a sizar, a sort of work-study role [489]. At that time, the college’s teachings were based
on those of Aristotle, whom Newton supplemented with modern philosophers such as Descartes
and astronomers such as Copernicus, Galileo, and Kepler. In 1665, he discovered the generalised
binomial theorem and began to develop a mathematical theory that later became infinitesimal cal-
culus. Soon after Newton had obtained his degree in August 1665, the University closed down as
a precaution against the outbreak of a Great Plague called Bubonic plague in England. Although
he had been undistinguished as a Cambridge student [333], Newton’s private studies at his home
in Woolsthorpe Manor over the next two years saw the development of his theories on calculus,
optics and the law of gravitation. For instance, while sitting at home in the garden there one day, he
saw an apple fall from a tree, providing him with the inspiration to eventually formulate his law of
universal gravitation. Newton later relayed the apple story to William Stukeley, who included it in
a book, “Memoir of Sir Isaac Newton’s Life,” published in 1752. In 1667 he returned to Cambridge
as a fellow of Trinity [365].

According to the Principia, Isaac Newton did not explicitly write the system (1.4), however,
in a famous letter to to Oldenburg dated October 24, 1676, he mentions a manuscript, “Methodus
differentialis”, that appear in only after the Principia, in 1711. The system (1.4) is explicitly
written in [171], where the “Methodus differentialis” is reproduced and translated, even though
the explicit solution of the system (1.4) also is not given. It may be assumed that the system (1.4)
might have been useless and even misleading to Newton. Probably, he was aware that his method
was both much faster and numerically stable than the direct application of the system (1.4). It was
later established that the first to explicitly write the system (1.4) was Newton’s friend Abraham
de Moivre (1667-1754), in 1730, for details see “de Moivre’s relationship with Newton” in [33].
Unlike Lagrange whose interest in the system (1.4) was interpolation as in (1.5), de Moivre’s main
motivation was to calculated the coefficients in a linear combination of geometric series, when
that linear combination is supposedly equals to another series, the coefficients of which turn out
to be the solution of a system equivalent to (1.4). In Miscellanea analytica, de Moivre explicitly
writes a general system with power coefficient, and gives a solution, thus being the one to prove the
non-singularity of the Vandermonde matrix by computing its inverse [110]. It is also know that de
Moivre had already published particular cases of the same result in the first edition of his “Doctrine
of chances” [111].

The main reasons that the Vandermonde matrix has become very much known and applicable is
that it has an exceptionally simple and/or user friendly expression, referred to as difference-product
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[78], for its determinant that in turn has a surprisingly fundamental relation to the determinant of
a general matrix. This qualifies it to be one the major numerical applications in the evaluation
of the Lebesgue constant which is a valuable numerical instrument for linear interpolation and
approximation because it provides a measure of how close the interpolant of a function is to the best
polynomial approximant of the function [101]. Moreover, if the interpolant is computed by using
the Lagrange basis, then the Lebesgue constant also expresses the conditioning of the interpolation
problem. In addition, many publications have been devoted to the search for optimal interpolation
points in the sense that these points lead to a minimal Lebesgue constant for the interpolation
problems on the interval [−1,1] as for instance contained in [402].

The Vandermonde matrix and its corresponding determinant occurs mainly in many applica-
tions both in mathematics and science which include polynomial interpolation [402], least square
regression [59], optimal experiment design [395], calculation of discrete Fourier transform [30],
solving systems of differential equations with constant coefficients [341], random matrix theory
[281, 327], modelling network of synaptic connections between neurons in the brain as applies
to neural networks or neuroscience that can help to construct dynamical models based on random
connectivity matrix [435], and in recent times financial modelling especially risk models and time
series [19].

The extreme points of Vandermonde determinant especially if optimized over various quadratic
surface have been proven to be of great significance in modelling scientific phenomena [454]. The
optimization of the Vandermonde determinant over various surfaces in a finite–dimensional has
been extensively investigated, for instance, see [305, 308]. For this particular case, the extreme
points of the Vandermonde determinant are found to be equivalent to roots of the rescaled classical
Hermite polynomials and explicit expressions are given for dimensions three up to seven. These
extreme points can visualized in three to seven dimensions by using symmetries of the results
by projecting all the extreme points onto a two-dimensional plane [308]. These results can be
extended to the values of the Vandermonde determinant optimized over such surfaces like the
ellipsoid and cylinder in three or higher dimensions. This can be achieved using the method of
Lagrange multipliers to find a system of polynomial equations which give the local extreme points
as its solutions. Also, using Gröbner basis and other techniques, the extreme points can be either
explicitly obtained.

Lagrange interpolation is a classical method for approximating a continuous function by a
polynomial that agrees with the function at a number of chosen points (the “nodes”). However, the
accuracy of the approximation is greatly influenced by the location of these nodes. Now, a useful
way to measure a given set of nodes to determine whether its Lagrange polynomials are likely to
provide good approximations is by means of the Lebesgue constant [381, 454]. A brief survey of
methods and results for the calculation of Lebesgue constants for some particular node systems is
presented mainly based on classical polynomials is also contained in [433]. These ideas were then
discussed in the context of Hermite–Fejér interpolation and a weighted interpolation method where
the nodes are zeros of Chebyshev polynomials of the second kind.
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Historic Background

1.1.1 Vandermonde Matrix
The Vandermonde matrix is such a famous matrix and assumes different structures in various
circumstances as will be explained in many examples which may include polynomial interpola-
tion, least squares curve fitting, optimal experiment design, construction of error-detecting and
error-correcting codes as discussed in [50, 234, 248, 394]. Other fields of occurrence include
financial mathematics in determining if a market with a finite set of traded assets is complete
[318], calculating the discrete Fourier transform [391] and related transforms such as the frac-
tional discrete Fourier transform [231], the quantum Fourier transform [117], and the Vandermonde
transform [29, 30], solving systems of differential equations with constant coefficients [232], var-
ious problems in mathematical physics [2, 472], nuclear physics [90, 403], random matrix theory
[18, 117, 167, 327], description of properties of the Fisher information matrix of stationary stochas-
tic processes [276] and many others field as discussed in detail in [305, 308].

The Vandermonde matrix is generally defined as follows [308]:

Definition 1.1.1. A Vandermonde matrix is an m×n matrix of the form,

Vmn(xn) = [xi−1
j ]m−1,n

i, j=1 =


1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xm−1
1 xm−1

2 · · · xm−1
n

 (1.6)

where xi ∈ R(or C), i = 1, · · · ,n. If the matrix is square, m = n, the notation Vn = Vmn is always
adopted for square n×n Vandermonde matrix.

1.1.2 Vandermonde Determinant
It is important to note that quite often it is not the Vandermonde matrix itself that is very useful,
instead it is the multivariate polynomial given by its determinant that is examined and used espe-
cially when expressed as difference-product [78]. The determinant of the matrix (1.6) is referred to
as the Vandermonde determinant, Vandermonde polynomial, or simply Vandermondian as can be
stated in [2, 454, 472] and can be written using an exceptionally simple formula given by [308].

Before we state definition of Vandermonde determinant, we first give the formal definition of
determinant [16, 289, 353]:

Definition 1.1.2. Let F be a field, the determinant is a function, det : Mn×n(F)→ F of a square
matrix M such that

det(M) = det(M.,1,M.,2, . . . ,M.,n)

where M., j, j = 1, . . . ,n are the column vectors of all elements of the j-th colum of M.
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The determinant function has the following properties:

• The determinant must be multi-linear

det(M.,1, . . . ,aM.,k +bN.,k, . . . ,M.,n)

= adet(M.,1, . . . ,aM.,k, . . . ,M.,n)+bdet(M.,1, . . . ,aN.,k, . . . ,M.,n).

• The determinant must be alternating, that is, if M.,i = M., j for some i 6= j, then det(M) = 0.

• If I is the identity matrix, then det(I) = 1.

Theorem 1.1.1 ([296] Leibnitz formula for determinants). A standard result from linear algebra
says that the determinant is unique and that it is given by the following formula

det(M) = ∑
σ∈Sn

(−1)sgn(σ)
n

∏
i=1

mi,σ(i) (1.7)

where Sn is the set of permutations of the set {1,2, . . . ,n}, that is lists that contain the number
1,2, . . . ,n exactly once, and if σ is a permutation, then σ(i) is the element of that permutation.

Remark 1.1.2. It is important to note here that formula (1.7) is often used as the definition of
determinant of a matrix as discussed in [16]. The formula (1.7) is mainly attributed to Gottfried
Wilhem Leibniz (1646-1716) established in 1693 when he described a method of solving a system
of linear equations by method closely related to that of Cramer’s rule [352, 356], the particular
letter of this result was published as [296] and its translation can be found in [430, 432].

Thus using the ideas of Cauchy [78] expressed in (1.3) and Leibnitz [296] given in (1.7) we
can give the Vandermonde determinant formula which is also given in [454]:

Theorem 1.1.3. The Vandermonde determinant, vn(x1, . . . ,xn), is given by

vn(x1, . . . ,xn) = ∏
1≤i< j≤n

(x j− xi). (1.8)

The expression on the right hand side of (1.8) is referred to as a difference-product and contains
n−1

∑
i=0

i =
1
2

n(n−1) factors.

There are different versions of the proof of this theorem and can be obtained by both method
of elementary row (or column) operation and combinatorial techniques, for instance, for detailed
discussion of these, see [33, 36, 63, 75, 238, 247, 279, 337, 386, 454], but here we provide a more
simplified proof based on direct decomposition by deletion of a given row. Here under we give a
detailed outline of proof of Theorem 1.1.3 based mainly on induction with a traditional matrix of
the same size [472]:
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Proof. Considering two matrices V> and T, such that

V> =


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n

 , T =



1 −xn 0 . . . 0 0

0 1 −xn
. . . 0 0

...
...

. . . . . . . . .
...

0 0 . . .
. . . −xn 0

0 0 . . . . . . 1 −xn


.

Then,

VT =


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
1 x3 x2

3 . . . xn−1
3

...
...

...
. . .

...
1 xn x2

n . . . xn−1
n





1 −xn 0 . . . 0 0

0 1 −xn
. . .

... 0
...

...
. . . . . . . . .

...

0 0 . . .
. . . −xn 0

0 0 . . . . . . 1 −xn


,

it follows that

VT =


1 x1− xn x2

1− x1xn . . . xn−1
1 − xn−2

1 xn

1 x2− xn x2
2− x2xn . . . xn−1

2 − xn−2
2 xn

...
...

...
. . .

...
1 xn−1− xn x2

n−1− xn−1xn . . . xn−1
n−1− xn−2

n−1xn

1 0 0 . . . 0



=


1 x1− xn x1(x1− xn) . . . xn−2

1 (x1− xn)

1 x2− xn x2(x2− xn) . . . xn−2
2 (x1− xn)

...
...

...
. . .

...
1 xn−1− xn xn−1(xn−1− xn) . . . xn−2

n−1(xn−1− xn)
1 0 0 . . . 0

=

[
1n−1 Y

1 0

]
,

where

Y =


x1− xn x1(x1− xn) . . . xn−2

1 (x1− xn)

x2− xn x2(x2− xn) . . . xn−2
2 (x1− xn)

...
...

. . .
...

xn−1− xn xn−1(xn−1− xn) . . . xn−2
n−1(xn−1− xn)

 .
The matrix Y can further be expressed as a product of a diagonal matrix D and submatrix W=Vn−1
of Vn, that is

Y =


x1− xn 0 . . . 0

0 x2− xn . . . 0
...

...
. . .

...
0 0 . . . xn−1− xn




1 x1 . . . xn−2
1

1 x2 . . . xn−2
2

...
...

. . .
...

1 xn−1 . . . xn−2
n−1

= DW.
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Applying the properties of matrix determinant, that is, the property of determinant of block
diagonal matrix and the product of matrices. Thus, it follows that

det(V) = |V|=
∣∣∣∣1n−1 Y

1 0

∣∣∣∣= (−1)n−1|Y|= (−1)n−1|D||W|= |−D||W|

= (xn− x1)(xn− x2) . . .(xn− xn−2)|W|. (1.9)

The expression in (1.9) relates the determinant of an n× n Vandermonde matrix to that of an
(n− 1)× (n− 1) Vandermonde matrix. By repeating the above decomposition procedure, allows
us to completely evaluate the determinant of any Vandermonde matrix.

For example, it can be noticed that when n = 2, that is, V is a 2× 2 Vandermonde matrix,
then gives det(V) = x2− x1; when n = 3, that is, V is a 3× 3 Vandermonde matrix, then gives
det(V) = (x3− x1)(x3− x2)(x2− x1); and in general,

det(V) = ∏
i< j

(x j− xi) = (xn− x1)(xn− x2) · · ·(xn− xn−1)

· (xn−1− x1)(xn−1− x2) · · ·(xn−1− xn−2) · · ·(x3− x1)(x3− x2)(x2− x1). (1.10)

The final expression (1.10) can easily be verified by simple mathematical induction argument based
on the decomposition relation in (1.9).

Its also clear from (1.10) that det(V) = |V| 6= 0 if and only if x j 6= xi for all i< j, i, j = 1,2, . . .n.
Thus V is a non-singular matrix if and only if the n scalars x1,x2, . . . ,xn are distinct.

Related to Theorem 1.1.3 above, if Vn(x) is the generalized Vandermonde matrix of the struc-
ture

Ṽn(xn) = [xi−1
j ]m,n−1

i, j=1 =


x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xm−1
1 xm−1

2 · · · xm−1
n

 (1.11)

then, the determinant of Ṽn(x) is given by

∏
1≤ j≤n

x j ∏
1≤i< j≤n

(x j− xi) (1.12)

1.1.3 Generalized Vandermonde Matrix
Many generalizations of the Vandermonde matrix have been proposed and studied in literature
[69, 102, 165, 257, 259, 299, 309, 434, 472]. One of the typical examples is the confluent Vander-
monde matrix, also referred to as generalized Vandermonde matrix. By definition, the generalized
Vandermonde determinant can be expressed as:
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Definition 1.1.3. A generalized Vandermonde matrix is an m×n matrix of the form

Gmn(xn) =
[
xαi

j

]m,n

i, j
=


xα1

1 · · · xα1
n

xα2
1 · · · xα2

n
...

. . .
...

xαm
1 · · · xαm

n

 (1.13)

where xi ∈ C,αi ∈ C, i = 1, · · · ,n.

The generalized Vandermonde matrices [224] and their determinants are directly connected to
the Schur polynomials [483], and these texts and literature [107, 108, 109, 152, 173, 275, 414, 504]
are devoted to the study of the same.

1.1.4 Properties of Vandermonde Determinant
In this section, we highlight some algebraic varieties of the Vandermonde determinant. Algebraic
varieties are the central objects of study in algebraic geometry. In principle, an algebraic variety is
defined as the set of solutions or zero locus of a system of polynomial equations over the real or
complex numbers [98, 219]. Since the extreme points of the Vandermonde determinant are closely
related to the zeros of polynomials as will be presented. Thus, it is important to look at some
properties of the Vandermonde determinant based on geometric curves and surfaces which are
determined by a system of polynomial equations such as sphere, ellipsoid, paraboloid, and hyper-
boloid. These properties will help us to explore a variety of applications Vandermonde determinant
and its extreme points.

Singularity
If m < n, the matrix Vn(x) has rank (m) if and only if all m j are distinct. A square Vandermonde
matrix is thus invertible if and only if the mi are distinct [305]. An explicit formula for the inverse
is known to be equivalent to the columns of the Lagrange basis polynomial [314]. The inverse of
the Vandermonde matrix is of great importance especially in solving linear systems. According
to [45, 145, 231, 232, 369, 370, 396, 454, 460], the inverse of the Vandermonde matrix can be
expressed as follows:

Theorem 1.1.4. The elements of the inverse of an n−dimensional Vandermonde matrix Vn(x) can
be calculated by

(V−1
n )i j =

(−1) j−1σn− j,i
n

∏
i=1
k 6=i

(xk− xi)

, (1.14)

41

Historic Background

Definition 1.1.3. A generalized Vandermonde matrix is an m×n matrix of the form

Gmn(xn) =
[
xαi

j

]m,n

i, j
=


xα1

1 · · · xα1
n

xα2
1 · · · xα2

n
...

. . .
...

xαm
1 · · · xαm

n

 (1.13)

where xi ∈ C,αi ∈ C, i = 1, · · · ,n.

The generalized Vandermonde matrices [224] and their determinants are directly connected to
the Schur polynomials [483], and these texts and literature [107, 108, 109, 152, 173, 275, 414, 504]
are devoted to the study of the same.

1.1.4 Properties of Vandermonde Determinant
In this section, we highlight some algebraic varieties of the Vandermonde determinant. Algebraic
varieties are the central objects of study in algebraic geometry. In principle, an algebraic variety is
defined as the set of solutions or zero locus of a system of polynomial equations over the real or
complex numbers [98, 219]. Since the extreme points of the Vandermonde determinant are closely
related to the zeros of polynomials as will be presented. Thus, it is important to look at some
properties of the Vandermonde determinant based on geometric curves and surfaces which are
determined by a system of polynomial equations such as sphere, ellipsoid, paraboloid, and hyper-
boloid. These properties will help us to explore a variety of applications Vandermonde determinant
and its extreme points.

Singularity
If m < n, the matrix Vn(x) has rank (m) if and only if all m j are distinct. A square Vandermonde
matrix is thus invertible if and only if the mi are distinct [305]. An explicit formula for the inverse
is known to be equivalent to the columns of the Lagrange basis polynomial [314]. The inverse of
the Vandermonde matrix is of great importance especially in solving linear systems. According
to [45, 145, 231, 232, 369, 370, 396, 454, 460], the inverse of the Vandermonde matrix can be
expressed as follows:

Theorem 1.1.4. The elements of the inverse of an n−dimensional Vandermonde matrix Vn(x) can
be calculated by

(V−1
n )i j =

(−1) j−1σn− j,i
n

∏
i=1
k 6=i

(xk− xi)

, (1.14)

41

41



Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

where σ j,i is the j-th elementary symmetric polynomial with variable xi set to zero, that is,

σ j,i = ∑
1≤m1≤m2<···<m j≤n

j

∏
k=1

xmk(1−δmk,i), δa,b =

{
1, a = b
0, a 6= b.

(1.15)

There are various versions of the proof of this theorem especially one proposed by [305, 308].
Alternatively, the inverse of the Vandermonde matrix can also be expressed by [145]:

Theorem 1.1.5. Let Vn(x) be a Vandermonde matrix and Wn(x) be its inverse. Then, the generic
element wn(i, j) of Wn(x) is:

wn(i, j) = φ(n, j)ψ(n, i, j), i, j = 1,2, . . . ,n, (1.16)

where φ(n, j) are functions recursively defined as

φ(n+1, j) =
φ(n, j)

xn+1− x j
, j = 1,2, . . . ,n,

φ(n+1,n+1) =
n

∏
k=1

1
xn+1− x j

,

ψ(n, i, j) is expressed in as

ψ(n, i, j) = (−1)i+1
n−i

∑
r=0

(−1)rxr
jσ(n,n− i− r), i, j = 1,2, . . . ,n,

for all 
σ(n, j) = 0, if ( j < 0)∨ (n < 0)∨ ( j > n),
σ(n,0) = 1, if n = 0,1,2,3, . . . ,
σ(n, j) = σ(n−1, j)+ xnσ(m−1,s−1), n, j are integers.

We also note that σ(n, j) is the jth order elementary symmetric polynomial associated to the set
x1,x2, . . . ,xn, that is, the sum of all products of j distinct nodes chosen from space X of dimension
n and these can be expressed as

n

∑
r=0

(−1)rxiσ(n,n− r) = 0, i = 1,2, . . . ,n,

n

∑
r=0

(−1)rxn+1σ(n,n− r) = (−1)n
n

∏
j=1

(xn+1− x j).
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1.1.5 Relationship with other determinants
The Leibniz formula, see Theorem 1.1.1, for the determinant which is given by

det(A) = ∑
σ∈Sn

(−1)sgn(σ)
n

∏
i=1

mi,σ(i), (1.17)

where
n

∏
i=1

mi,σ(i) is an elementary product of the entries in the ith row and jth column of M and is

of the form a1σ(1)a2σ(2) · · ·anσ(n), Sn is the set of permutations over the set {1,2, . . . ,n}, that is, all
lists that contains the numbers 1,2, · · · ,n exactly once, and if σ is a permutation, then σ(i) is the
element of that permutation. Considering the case of a square Vandermonde matrix A, it follows
that

det
(
Vn(x)

)
= ∑

σ∈Sn

sgn(σ)
n

∏
i=1

xσ(i)−1
i (1.18)

where Sn denotes the set of permutations of {1, · · · ,n} and sgn(σ) denotes the signature of the
permutations σ . This determines the factors as

∑
σ∈Sn

sgn(σ)
n

∏
i=1

xσ(i)−1
i = ∏

1≤i< j≤n
(x j− xi). (1.19)

This generalizes to the main result of [78] given in (1.3). The property is very important is
important is investigating the extreme points of generalized Vandermonde determinant.

1.1.6 The Alternant Matrix
The defining property of the Vandermonde polynomial is that it is alternating in the entries, mean-
ing that permuting the Xi by an odd permutation changes the sign, while permuting them by an
even permutation does not change the value of the polynomial, in fact, it is the basic alternating
polynomial [352, 463].

Definition 1.1.4. An alternant matrix is a matrix of the form

Amn(fm,xn) = [ fi(x j)]
m,n
i, j =


f1(x1) f1(x2) . . . f1(xn)
f2(x1) f2(x2) . . . f2(xn)

...
...

. . .
...

fm(x1) fm(x2) . . . fm(xn)


where fi : F→ F and F is a field. If the matrix is square, then m = n, so that the notation becomes
An = Amn.
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Thus the matrix depends on the order, and is zero if two variables are equal. This also follows
from the formula, but is also consequence of being alternating: if two variables are equal, then
switching them both does not change the value and changes sign of the value, yielding Vn =−Vn,
and thus Vn = 0 (assuming the characteristic of F is not 2, otherwise being alternating is equivalent
to being symmetric) [226, 499].

Conversely, the Vandermonde polynomial is a factor of every alternating polynomial: as shown
above, an alternating polynomial vanishes if any two variables are equal, and thus one must have
(Xi−X j) as a factor for all i 6= j.

Some examples of alternant matrices include:
Jacobian matrices: This matrix can be defined as follows [404]:

Definition 1.1.5. Let f : Fn→ Fn be a vector-valued function that is n times differentiable with
respect to each variable, then the Jacobian matrix J is given by

∂ f1

∂x1
. . .

∂ fn

∂x1
...

. . . . . .
∂ f1

∂xn
. . .

∂ fn

∂xn
.


There are numerous applications of the Jacobian matrix based on the absolute value of its

determinant, in particular in how elemental volumes are deformed when changing variables over
general surfaces in multivariate calculus.

Wronskian matrix The Wronskian matrix is commonly used to test if a set of solutions are
linearly independent as well as finding solutions to ordinary differential equations [51, 52, 53, 60,
181, 236, 311, 376, 377, 497, 498].

Definition 1.1.6. If fn = ( f1, f2, . . . , fn) where fi =
di−1

dxi−1 , gn = (g1,g2, . . . ,gn) where gi ∈Cn−1[C],
then the alternant matrix An (fn;gn) will be called the Wronskian matrix.

The classical application of the Wronskian is confirming if the set of solutions to a linear
differential equation are independent. This is determined from the determinant in which if the
determinant in non-zero, then the solutions are linearly independent.

There are other examples of alternant matrices which includes the Bell matrix which can be

used to convert function composition into matrix multiplication. If Di =
di−1

dxi−1 and g j(x)= ( f (x)) j ,

where f is continuous smooth function, that is, infinitely differentiable, then the alternant matrix
B[ f ] = An (Dn,gn) is called a Bell matrix and its transpose is called Carleman matrix. Detailed
discussion of this can be got in [250, 279, 280].

The other other famous example of alternant matrix is called the Moore matrix. This matrix
can be constructed by taking an alternant matrix say Vandermonde or Wronskian matrix where by
the rows are given by the power of the Frobenius automorphism, F(ω) = ω

p where p < ∞. More
detailed discussion on the Moore matrix can be got in [120, 305, 308, 340, 358, 368].
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Vandermonde Determinant and Symmetric Polynomials

The alternant property of Vandermonde matrix and its determinant is very useful in the study
of symmetric group properties details of which are discussed in Section 1.2.

1.1.7 Calculus of the Vandermonde matrix and its Determinant
In mathematical calculus, a differentiable function of one or more real variables is a function whose
derivative exists at each point in its domain. Thus, the graph of a differentiable function must have
a (non-vertical) tangent line at each interior point. Thus Vandermonde determinant is differentiable
since it is a continuous polynomial. Its derivative can be expressed as [2, 305, 308, 454]:

Theorem 1.1.6. For any 1≤ k ≤ n and x = (x1, . . . ,xn), then

∂vn(x)
∂xk

=
n

∑
i=1
k 6=i

vn(x)
(xk− x j)

. (1.20)

where vn(x) is the Vandermonde determinant given in (1.8).

This property verifies continuity and differentiability of Vandermonde determinant and is very
helpful in the optimization of the Vandermonde determinant by the method of the Lagrange multi-
plier [272, 273, 406]. The detailed discussion and illustration of this property and related applica-
tions can also be obtained in [305, 308, 342, 343, 344, 345, 346, 347, 348, 349, 350].

1.2 Vandermonde Determinant and Symmetric Polyno-
mials

In this section we give key concepts of symmetric polynomials (functions) which are important
in characterization of the properties of the Vandermonde matrix and its determinant especially
regarding calculus, inverse and decomposition. These concepts will be applied mainly in Chapter 2,
Chapter 3, Chapter 4, Chapter 5, Chapter 6, Chapter 7, Chapter 8 and Chapter 9.

1.2.1 Symmetric Polynomials
Symmetric polynomials occur naturally especially in the study of the relation between the roots
of a polynomial in one variable and its coefficients, whereby the coefficients can be expressed by
polynomial expressions in terms of its roots [312, 440, 472].

Definition 1.2.1. A weak composition, α , of a non-negative integer n is a sequence of non-negative
integers α = (α1,α2, . . .) such that ∑

i
αi = n.
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In mathematical calculus, a differentiable function of one or more real variables is a function whose
derivative exists at each point in its domain. Thus, the graph of a differentiable function must have
a (non-vertical) tangent line at each interior point. Thus Vandermonde determinant is differentiable
since it is a continuous polynomial. Its derivative can be expressed as [2, 305, 308, 454]:

Theorem 1.1.6. For any 1≤ k ≤ n and x = (x1, . . . ,xn), then

∂vn(x)
∂xk

=
n

∑
i=1
k 6=i

vn(x)
(xk− x j)

. (1.20)

where vn(x) is the Vandermonde determinant given in (1.8).

This property verifies continuity and differentiability of Vandermonde determinant and is very
helpful in the optimization of the Vandermonde determinant by the method of the Lagrange multi-
plier [272, 273, 406]. The detailed discussion and illustration of this property and related applica-
tions can also be obtained in [305, 308, 342, 343, 344, 345, 346, 347, 348, 349, 350].

1.2 Vandermonde Determinant and Symmetric Polyno-
mials

In this section we give key concepts of symmetric polynomials (functions) which are important
in characterization of the properties of the Vandermonde matrix and its determinant especially
regarding calculus, inverse and decomposition. These concepts will be applied mainly in Chapter 2,
Chapter 3, Chapter 4, Chapter 5, Chapter 6, Chapter 7, Chapter 8 and Chapter 9.

1.2.1 Symmetric Polynomials
Symmetric polynomials occur naturally especially in the study of the relation between the roots
of a polynomial in one variable and its coefficients, whereby the coefficients can be expressed by
polynomial expressions in terms of its roots [312, 440, 472].
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Definition 1.2.2 ([440]). Let x = (x1, . . .) be indeterminates and let n ∈ N. A homogeneous sym-
metric polynomial of degree n over a commutative ring R is a formal power series

f (x) = ∑
α

cαxα (1.21)

where

(a) α ranges over all weak compositions α = (α1,α2, . . .) of n (of infinite length),

(b) cα ∈ R,

(c) xα stands for the monomial xα1
1 xα2

2 · · · ,

(d) f (xσ(1),xσ(2) . . .) = f (x1,x2, . . .) for a every permutation σ of the positive integers P.

Considering the ring Z[x1,x2, . . . ,xn] of polynomials in n independent variables x1,x2, . . . ,xn

with integers coefficients. The symmetric group Sn acts on this ring by permuting the variables and
a polynomial is symmetric if it is invariant under this action. The symmetric polynomials form a
subring [312]

Λ = Λn(x) = Z[x1,x2, . . . ,xn]
Sn .

Λn is graded ring and we have
Λn =

⊕
k≥0

Λ
k
n

where Λk
n consists of the homogeneous symmetric polynomials of degree k, together with the zero

polynomial [35, 312, 410].

Definition 1.2.3. A partition of a positive integer n is a finite non-negative non-increasing sequence

of positive integers λ1,λ2, . . . ,λn, such that λ1≥ λ2≥ . . .≥ λn≥ 0 and |λ |=
n

∑
i=1

λi = n. It is denoted

by λ ` n.

Definition 1.2.4 ([410]). , Let λ =(λ1,λ2, . . . ,λn)∈Nn be a partition of n and x=(x1, . . . ,xn)∈Rn

be indeterminates. Then, the sum of monomials, corresponding to λ is given by

mλ (x) = ∑
λ

xλ = ∑
|λ |=n

xλ1
i1 xλ2

i2 · · ·x
λn
in = ∑

|λ |=n

n

∏
k=1

xλk
ik (1.22)

where the sum is over all distinct monomials xλ = xλ1
1 xλ2

2 · · ·x
λn
n and mλ is referred to as monomial

symmetric polynomial.

For example, with λ = (2,0, . . . ,0), then mλ = x2
1+x2

2+x2
3 . . . and for λ = (2,1,0, . . . ,0), gives

mλ = x2
1x2 + x1x2

2 + x2
1x3 + x1x2

2 + x2
2x3 + x2x2

3 + . . ..
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Definition 1.2.5. Let f (x) be the polynomial and ek the polynomials in the n variables xi, 1≤ i≤ n,
be given by

f (x) =
n

∏
i=1

(x− xi) =
n

∑
k=0

(−1)kekxn−k. (1.23)

Then, for each integer k≥ 0, the kth elementary symmetric polynomial ek is the sum of all products
of k distinct variables xi, so that e0 = 1 and

ek = ∑
i1<i2<...<ik

xi1xi2 · · ·xik = m1k (with e0 = m /0 = 1,) k ≥ 1, (1.24)

eλ = eλ1eλ2 · · · , if λ = (λ1,λ2, . . .) and /0 = (0, . . . ,0) is for zero partition.

Example 1.2.1. e1 =
n

∑
k=1

xk, e2 = ∑
1≤k<l≤n

xkxl, e3 = ∑
1≤k<l<m≤n

xkxlxm, . . . ,

en = x1x2x3 . . .xn.

The generating function for the ek is

E[t] = ∑
r≥0

ertr = ∏
i≥1

(1+ xit) (1.25)

where t is another variable as can be seen by multiplying out the product on the right.
Related to the elementary symmetric polynomials, are polynomials gnk(x) that can be expressed

as stated in [472].

Definition 1.2.6. Let gnk(x) be a polynomial such that the polynomials ekl in the (n−1) variables
xi,1≤ i≤ n, i 6= k, be given by:

gnk(x) =
fn(x)

x− xk
=

n−1

∑
l=0

(−1)leklxn−1−l (1.26)

gnn(x) = fn−1(x) (1.27)

for all values of x. Then,
e(n)nl = en−1

l . (1.28)

Example 1.2.2. e(3)2 = x1x2 + x1x3 + x2x3, e(n)k0 = 1,1≤ k ≤ n, e(3)21 = x1 + x3, e(3)22 = x1x3,

e(4)31 = x1 + x2 + x3, e(4)32 = x1x2 + x1x4 + x2x4, e(4)33 = x1x2x4.

The above content can be summed up in the lemma as stated in [472].

Lemma 1.2.3 ([472]). e(n)rl =
l

∑
k=0

en
k(−xr)

l−k.
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Proposition 1.2.1 ([472]).
∏
i, j
(1+ xiy j) = ∑

λ

mλ (x)eλ (y). (1.29)

Definition 1.2.7. For each r ≥ 0, the rth complete symmetric polynomial hr is the sum of all
monomials of total degree r in the variables x1,x2, . . . , so that

hn = ∑
|λ |=n

mλ = ∑
i1<i2<...<in

λ1+λ2+...+λn=n

xλ1
i1 xλ2

i2 · · ·x
λn
in , (h0 = m10 = 1,h1 = e1), (1.30)

and hλ = hλ1hλ2 · · · with λ = (λ1,λ2, . . .) and /0 = (0, . . . ,0) is for zero partition. It is convenient to
define hn and en to be zero for n < 0.

The generating function for hr is given by

H(t) = ∑
r≥0

hrtr = ∏
i≥1

(1− xit)−1. (1.31)

This can easily be seen from the identity (1− xit)−1 = ∑
k≥0

xk
i tk, and multiplying these geometric

series together.
It should be noted from (1.25) and (1.31) that

H(t)E(−t) = 1 (1.32)

or equivalently,
n

∑
r=0

(−1)rerhn−r = 0 (1.33)

for all n≥ 1.
The equation (1.32) leads to a determinant identity, that is, by taking N to be a positive integer

and considering the matrices H and E of N +1 rows and columns given by

H = (hi− j)0≤i, j≤N , E =
(
(−1)i− jei− j

)
0≤i, j≤N . (1.34)

Applying the standard convention mentioned earlier that hr = er = 0 for r < 0. Both H and E are
lower triangular, with 1’s down the diagonal, then the following identity holds

det
(
H
)
= det

(
E
)
= 1.

The relation (1.34) also shows that the matrices H and E are inverses of each other. It follows
that each minor of H is equal to the complementary cofactor of E>, the transpose of E.

Proposition 1.2.2 ([440]).
∏
i, j
(1− xiy j)

−1 = ∑
λ

mλ (x)hλ (y) (1.35)
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Definition 1.2.8. Consider a polynomial P(x) with roots xi, i = 1, . . . ,n. For any given r ≥ 1, the
rth power sum is given by

pr =
n

∑
i=1

xr
i = mr, r ≥ 1, (with p0 = m /0 = 1). (1.36)

We also define the power sum with respect to a partition λ = (λ1,λ2, . . .) as pλ = pλ1 pλ2 · · · .

The generating function for the pr is expressed as

P(t) = ∑
r≥1

pttr−1 = ∑
i≥1

∑
r≥1

xr
i t

r−1 = ∑
i≥1

xi

1− xit
= ∑

i≥1

d
dt

log
1

xit

so that
P(t) =

d
dt

log∏
i≥1

(1− xit)−1 =
d
dt

logH(t) = H
′
(t)/H(t). (1.37)

Likewise we have
P(−t) =

d
dt

logE(t) = E
′
(t)/E(t). (1.38)

For example, for n = 3
e3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + . . . ,

h3 = x3
1 + x3

2 + x3
3 + . . .+ x2

1x2 + x1x2
2 + . . .+ x1x2x3 + x1x2x4 + . . .

p3 = x3
1 + x3

2 + x3
3 + . . . .

Lemma 1.2.4 ([440]). The power sums in (1.36) can be expressed in terms of the coefficients of
the polynomial

P(x) = xn +
r−1

∑
i=0

eixi =
n

∏
j=1

(x− x j), (1.39)

as follows
k−1

∑
i=1

en−i pk−i + ken−k = 0, k = 1,2, . . . ,n (1.40)

k−1

∑
i=1

en−i pn+k−i = 0, k = 1,2, . . . ,m−n,

for any m > n

The simple proof of the Lemma 1.2.4 follows from (1.37) and (1.38) such that

nhn =
n

∑
r=1

prhn−r, (1.41)

nen =
n

∑
r=1

(−1)r−1 prrn−r, (1.42)
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for n ≥ 1, and these equations enable us to express the hs and the es in terms of the ps and vice
versa. The Equation (1.42) is due to Isaac Newton, and are famously known as Newton’s formu-
las. From Equation (1.41) it is clear that hn ∈ Q[p1, . . . , pn] and pn ∈ Z[h1, . . . ,hn] and hence that
Q[p1, . . . , pn] =Q[h1, . . . ,hn].

Example 1.2.5 ([440]). Evaluating en from Equations (1.33) we obtain en = det(h1−i+ j)1≤i, j≤n ,
and dually hn = det(e1−i+ j)1≤i, j≤n . Similarly from Equation (1.41), we obtain the determinant
formulas

pn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 1 0 . . . 0 0

2e2 e1 1
. . . 0 0

...
. . . . . . . . .

...
(n−2)en−2 en−3 . . . e1 1 0
(n−1)en−1 en−2 en−3 . . . e1 1

nen en−1 en−2 . . . e2 e1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.43)

and

n!en =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 1 0 . . . 0 0

p2 p1 2
. . . 0 0

...
. . . . . . . . .

...
pn−2 pn−3 . . . p1 n−1 0
pn−1 pn−2 pn−3 . . . p1 n−1
pn pn−1 pn−2 . . . p2 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.44)

where | · | represents determinant of a matrix and dually

(−1)n−1 pn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 1 0 . . . 0 0

2h2 h1 1
. . . 0 0

...
. . . . . . . . .

...
(n−1)hn−2 hn−3 . . . h1 1 0
(n−1)hn−1 hn−2 hn−3 . . . h1 1

nhn hn−1 hn−2 . . . h2 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.45)

and

n!hn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 −1 0 . . . 0 0

p2 p1 −2
. . . 0 0

...
. . . . . . . . .

...
pn−2 pn−3 . . . p1 −n+1 0
pn−1 pn−2 pn−3 . . . p1 −n+1
pn pn−1 pn−2 . . . p2 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.46)
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p1 1 0 . . . 0 0

p2 p1 2
. . . 0 0

...
. . . . . . . . .

...
pn−2 pn−3 . . . p1 n−1 0
pn−1 pn−2 pn−3 . . . p1 n−1
pn pn−1 pn−2 . . . p2 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.44)

where | · | represents determinant of a matrix and dually

(−1)n−1 pn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 1 0 . . . 0 0

2h2 h1 1
. . . 0 0

...
. . . . . . . . .

...
(n−1)hn−2 hn−3 . . . h1 1 0
(n−1)hn−1 hn−2 hn−3 . . . h1 1

nhn hn−1 hn−2 . . . h2 h1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.45)

and

n!hn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p1 −1 0 . . . 0 0

p2 p1 −2
. . . 0 0

...
. . . . . . . . .

...
pn−2 pn−3 . . . p1 −n+1 0
pn−1 pn−2 pn−3 . . . p1 −n+1
pn pn−1 pn−2 . . . p2 p1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.46)
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Lemma 1.2.6. From the matrix determinants given in (1.43), (1.44), (1.45) and (1.46) we can write∣∣∣∣∣∣∣∣∣∣∣∣∣

p0 p1 . . . pk−1 pk

p1 p2
. . . pk pk+1

p2 p3
. . . . . .

...
...

. . . . . . . . . pn−1
pn−k pn−k+1 . . . pn−1 pn

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1
x1 x2 . . . xn−1 xn

x2
1 x2

2 . . . x2
n−1 x2

n
x3

1 x3
2 . . . x3

n−1 x3
n

...
...

. . .
...

...
xn

1 xn
2 . . . xn

n−1 xn
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= det
(
Vδ ′(x)

)2 (1.47)

where Vn(x) is the Vandermonde matrix with x = (x1,x2, . . . ,xn), Definition 4.1.1 and Equation
(4.2) and also in Table 1.1 as well as decomposition (1.53).

Following the fundamental theorem of symmetric polynomials [98, 312], then it can be shown
that the determinant of even powers of Vandermonde matrices are symmetric polynomials.

Theorem 1.2.7 ([472] Newton’s Theorem). Any symmetric polynomial in the ring K[x1,x2, . . . ,xn]
can be written as a polynomial in elementary symmetric polynomials e1,e2, . . . ,en with coefficients
in the field K and this polynomial is unique.

Proposition 1.2.3 ([440]).

∏
i, j
(1− xiy j)

−1 = exp

(
∑
n≥1

1
n

pn(x)pn(y)

)
= ∑

λ

z−1
λ

pλ (x)pλ (y) (1.48)

∏
i, j
(1+ xiy j) = exp

(
∑
n≥1

(−1)n−1 1
n

pn(x)pn(y)

)
= ∑

λ

z−1
λ

ελ pλ (x)pλ (y)

where for a partition λ = 〈1m12m2 · · · 〉, zλ = 1m1m1!2m2m2! · · · and ελ =(−1)m2+m4+···=(−1)n−`(λ ).

Proposition 1.2.4 ([440]).

hn(x) = ∑
λ

z−1
λ

pλ (x), en(x) = ∑
λ

ελ z−1
λ

pλ (x). (1.49)

The above concepts on symmetric polynomials will be helpful in detailed study of Schur poly-
nomials.

1.2.2 LDU Decomposition of Vandermonde Matrix Using Symmetric
Polynomials

The Vandermonde matrix can be decomposed by LDU factorization [379]. Denoting the Vander-
monde matrix with V = Vδ ′(x)

(
or Vδ (x),Vλ ′+δ ′(x), Vλ+δ (x)

)
, then V can be expressed in terms

of the factors L a lower triangular matrix, D a diagonal matrix and U an upper triangular matrix.
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This decomposition procedure can also help to explain properties of generalized Vandermonde
matrices, Cauchy matrices, Hankel matrices, and Toeplitz matrices listed in Table 1.1.

According to [30], the Vandermonde matrix can be used to decompose both the Hankel and
Toeplitz matrices whereby for the Hankel matrices

H = V>DV (1.50)

where D is a diagonal matrix and V> is the transpose of the transpose of the matrix. In the case for
the Toeplitz matrices factorization by Vandermonde determinant we have

T = V>
?

x DV (1.51)

where the Vandermonde matrix Vx is defined by the scalars (x>
?

k )−1, the complex conjugate of the
scalars, and V>

?
to indicate the complex conjugate transposition for matrices.

Remark 1.2.8. The Toeplitz matrix T with entries t−i = tn−i, i = 1,2, . . .n− 1 is referred to as a
circulant matrix if while the matrix H with entries hn+i = hi, i = 1,2, . . . ,n−1 is said to be Hankel
circulant. It is also important to note that the Hankel matrix H can be converted into the Toeplitz
matrix T by multiplication with permutation matrix Pn =

[
en−1 . . .e1 e0

]> so that PnT = H and
P2

n = In.

The powers of the the Vandermonde matrix can be obtained directly from the the LDU decom-
position described in (1.52) where by Vn = LDnU where the elements of L, D and U are as given
in (1.53). The same applies to the Cauchy matrix, Hankel matrix and Toeplitz matrix.

Since the evaluation of the determinant follows directly from its diagonal matrix, then the
powers of the Vandermonde determinant are expressed as det(V)n = det(Vn) = det(D)n for n≥ 2.

Let `r
i (x) = (x−xi)(x−xi+1) . . .(x−xr), i≤ r≤ n where the coefficients of xn in the expansion

of `r
i (x) can be expressed in terms of elementary symmetric polynomials as described in the previ-

ous section. Since `r
i (x) is continuous function, then its derivative with respect to x exists thus, for

a fixed x = x j we have

`′
r
i (x j) =

∂`r
i (x)

∂x

∣∣∣∣
x=x j

=
r

∏
i=1
i 6= j

(x j− xi), i≤ r ≤ n.

The following formulas for the LDU decomposition of Vandermonde matrix V = Vλ ′+δ ′(x) are
based on the LU factors in [379].

Theorem 1.2.9 ([370]). Let V =
{

x j−1
i

}n

j=1
. Then,

V = LDU and V−1 = U−1D−1L−1, (1.52)

where their respective elements are given by (1.53) and (1.54):
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dkk =
k−1

∏
j=0

(xk− x j), k = 1,2, . . . ,n;

lk j = ∑
i0+...+i j=k− j

i0,...,i j≥0

xi0
0 xi1

1 . . .xi j
j , 0≤ j < k ≤ n;

uk j =
k−1

∏
i=0

x j− xi

xk− xi
, 0 < k < j ≤ n; (1.53)

u0 j = 1, j = 1, . . . ,n;

d−1
kk =

k−1

∏
j=0

(xk− x j)
−1, k = 1,2, . . . ,n;

l−1
k j = (−1)k+ j

∑
0≤i0<i1<ik− j−<k

ai0ai1 · · ·aik− j−1 , 0≤ j < k ≤ n; (1.54)

u−1
k j = d j j

j

∏
i=0
i 6=k

1
xk− xi

, 0≤ k ≤ j ≤ n.

Theorem 1.2.10 ([202, 321]). Let C be a Cauchy matrix C =

(
1

ti− s j

)n

i, j=1
. Then,

C = LDU and C−1 = U−1D−1L−1, (1.55)

where their respective elements are given by (1.56) and (1.57):

dkk = (tk− sk)
−1

k−1

∏
m=0

(sk− sm)(tk− tm)
(sk− tm)(tk− sm)

, k = 1,2, . . . ,n;

lk j =
(tk− sk)

(tk− s j)

k−1

∏
m=1

(tk− sm)(t j− tm)
(t j− sm)(tk− tm)

, 1≤ k < j ≤ n; (1.56)

uk j =
(tk− sk)

(tk− s j)

k−1

∏
m=1

(sk− tm)(s j− sm)

(s j− tm)(sk− sm)
, 1≤ k < j ≤ n;

d−1
kk = (tk− sk)

k−1

∏
m=1
m 6= j

(sk− tm)(tk− sm)

(sk− sm)(tk− tm)
, k = 1,2, . . . ,n;

l−1
k j =

(t j− s j)

(tk− s j)

k−1

∏
m=1

(t j− sm)(tk− tm)
(t j− sm)(tk− tm)

, 1≤ k < j ≤ n; (1.57)

u−1
k j =

(t j− s j)

(t j− sk)

k−1

∏
m=1
m6= j

(s j− tm)(sk− sm)

(s j− sm)(sk− tm)
, 1≤ k < j ≤ n.
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Vandermonde matrices Vδ ′ =
{

x j−1
i

}n−1

i, j=1
Generalized Vλ (x) =

{
xλ j

i

}n

i, j=1
1 1 1 . . . 1
x1 x2 x3 . . . xn
x2

1 x2
2 x2

2 . . . x2
n

...
...

... . . . ...
xn−1

1 xn−1
n xn−1

n . . . xn−1
n




xλ1

1 xλ1
2 xλ1

3 . . . xλ1
n

xλ2
1 xλ2

2 xλ2
3 . . . xλ2

n

xλ3
1 xλ3

2 xλ3
3 . . . xλ3

n
...

...
... . . . ...

xλn
1 xλn

2 xλn
3 . . . xλn

n


Toeplitz matrices T =

(
xi− j

)n−1
i, j=0 Hankel matrices H =

(
hi+ j

)n−1
i, j=0

t0 t−1 x−2 . . . t1−n

t1 t0 x−1
. . . ...

... . . . . . . . . . t−1

tn−1 tn−2
. . . x1 t0




h0 h1 h2 . . . hn−1

h1 h2
...

h2
...

... h2n−3
hn−1 . . . . . . h2n−3 h2n−2


Circulant matrices C =

(
ci− j

)n−1
i, j=0 Cauchy matrices S =

(
1

si− t j

)n−1

i, j=0
c0 cn−1 . . . c2 c1

c1 c0 cn−1
. . . c2

... c1 c0
. . . ...

cn−2
. . . . . . cn−1

cn−1 cn−2 . . . c1 c0




1

s0−t0
1

s0−t1
. . . 1

s0−tn−1
1

s1−t0
1

s1−t1
. . . 1

s1−tn−1
... . . . . . . . . .
1

sn−1−t0
1

sn−1−t1
. . . 1

sn−1−tn−1


Table 1.1: Vandermonde type matrices.

Considering the close relationship relationship between the Vandermonde matrices, Hankel
matrices, Toeplitz matrices, Circulant matrices and Cauchy matrices, whose structures are as shown
in the Table 1.1, then the above LDU decomposition procedure for V can also be used to decompose
the Hankel and Toeplitz matrices by combining the relations (1.52) and (1.53) with (1.50) and
(1.51).
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matrices, Toeplitz matrices, Circulant matrices and Cauchy matrices, whose structures are as shown
in the Table 1.1, then the above LDU decomposition procedure for V can also be used to decompose
the Hankel and Toeplitz matrices by combining the relations (1.52) and (1.53) with (1.50) and
(1.51).
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1.2.3 General Properties of Vandermonde Determinant Based on Sym-
metric Polynomials

Here we give outline of the general properties of the Vandermonde determinant based on the sym-
metric polynomials.

(a) Cofactors of the Vandermonde Determinant:

Theorem 1.2.11 ([472]). If Vδ ′(x) =
{

x j−1
i

}n

i, j=1
is a Vandermonde matrix, then the scaled

cofactors of the Vandermonde determinant det
(
Vδ ′(x)

)
= aδ ′(x), are given by given by the

quotient formula

[aδ ′(x)]i j
n =

(−1)n− je(n)i,n− j

gni(xi)
(1.58)

where e(n)i,n− j the symmetric polynomial given in (1.28) and the function gni(xi) is as defined
in (1.26).

Theorem 1.2.12 ([472]). If Vδ ′(x) =
{

x j−1
i

}n

i, j=1
is Vandermonde matrix, then

[aδ ′(x)]
(n)
n j = (−1)n− j[aδ ′(x)]n−1e(n−1)

n− j (1.59)

(b) A Hybrid Determinant: Given two n×n Vandermonde matrices Vδ ′(x) =
{

x j−1
i

}n

i, j=1
and

Vδ ′(y) =
{

y j−1
i

}n

i, j=1
. Let Wrs be a hybrid matrix formed by replacing the rth row of Vδ ′(x)

by the sth row of Vδ ′(y).

Theorem 1.2.13 ([472]). The hybrid determinant of the matrix Wrs can be expressed as

det(W)rs
aδ ′(x)

=
gnr(ys)

gnr(xr)
=

n

∏
i=1

(ys− xi)

(ys− xr) ∏
1≤i<r≤n

(xr− xi)
. (1.60)

Theorem 1.2.14 ([472]). Given A is an n× n matrix with entries e(m)
i, j−1 as given in (1.28).

Then,

det(A) =
∣∣e(m)

i, j−1

∣∣
n=

∣∣∣∣∣∣∣∣∣∣
e(m)

10 e(m)
11 . . . e(m)

1,n−1

e(m)
20 e(m)

21 . . . e(m)
2,n−1

...
...

...
...

e(m)
n0 e(m)

n1 . . . e(m)
n,n−1

∣∣∣∣∣∣∣∣∣∣
n

= (−1)
1
2 n(n−1)aδ ′(x). (1.61)
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The detailed outlines of the proofs to the above two theorems can also be found in [472].

(c) The Cauchy Double Alternant: Considering the Cauchy matrix as given in Table 1.1, then

the Cauchy double alternant is the determinant det(C) = det
(

1
xi− y j

)
n
, seen in Table 1.1

as well as decomposition (1.56), which is calculated from the ratio of determinants for the
n× n of two Vandermonde matricesVδ ′(x) =

{
x j−1

i

}n

i, j=1
and Vδ ′(y) =

{
y j−1

i

}n

i, j=1
. This

can be achieved in the following steps as outlined in [472].

Theorem 1.2.15. Performing the column operation C′j = C j−Cn, 1≤ j ≤ n−1, and then
removing all the common factors from the elements of rows and columns. The result becomes

det(C) =

n−1

∏
k=1

(yk− yn)

n−1

∏
k=1

(xk− xn)

·det(B)n, (1.62)

where B is the matrix in the last column is
[
1 1 . . . 1

]>
n and all other columns are

identical with the corresponding columns of C.

Next performing the row operations R′i = Ri−Rn, 1≤ j ≤ n−1, on B, which will decom-
pose into a matrix of order n−1. After extracting all the common factors from the elements
of rows and columns, leads to

det(B)n =

n−1

∏
k=1

(yk− yn)

n−1

∏
k=1

(xk− xn)

·det(C)n−1. (1.63)

Substituting for det(B)n in (1.62) yields a reduction formula for det(C)n, which, when ap-
plied, results in the required formula

det(B)n =
(−1)

1
2 n(n−1)[aδ ′(x)]n[aδ ′(y)]n

∏
1≤r,s≤n1

(xr− ys)
, (1.64)

where [aδ ′(x)]n and [aδ ′(y)]n are determinants of Vandermonde matrices of size n.

(d) Determinant Related to the Vandermonde Determinant: Let Pk(x) be a polynomial de-

fined as Pk(x) =
k

∑
s=1

askxs−1, k ≥ 1. That is, Pk(x) is not a monomial since the leading

coefficient a1,k which is not necessarily equal to one.

Theorem 1.2.16 ([472]). Let Vδ ′(x) be a Vandermonde matrix with entries xi j = x j−1
i , then

det
(
Pi(x j)

)
n=
(
a11a22 · · ·ann

)
· [aδ ′(x)]n.
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1.2.4 Schur Polynomials
The Schur polynomials named after Issai Schur (1875–1941) are a family of symmetric polyno-
mials in n variables, indexed by partitions, that generalized the elementary symmetric polynomials
[63, 251, 318, 338, 339, 418]. The Schur polynomials in representation theory are the characters
of polynomial irreducible representations of the general linear group [175, 312].

Definition 1.2.9. Let λ =(λ1, . . . ,λn) be a partition of a positive integer n such that λ1 > λn > .. . >
λn ≥ 0, then the quotient homogeneous polynomial sλ when aλ+δ is divided by aδ in Z[x1, . . . ,xn],
that is,

sλ (x1, . . . ,xn) =
aλ+δ

aδ

=
a(λ1+n−1,λ2+n−2,...,λn)(x1, . . . ,xn)

a(n−1,n−2,...,0)(x1, . . . ,xn)
(1.65)

is symmetric, that is, it is in the subring with basis mλ ,eλ ,hλ , pλ of symmetric polynomials over
field K. This set of functions is called the Schur functions in the variables x1,x2, . . . ,xn, corre-
sponding to the partition λ (where l(λ )≤ n), and is homogeneous of degree |λ |.

The Schur polynomials are a generalization of the quotient of determinants of two alternant
matrices:

Proposition 1.2.5 ([193]). Given a non-negative integer n, for each partition λ = (λ1, . . . ,λn) of
non-negative integers such that λ1 > λn > .. . > λn ≥ 0, the homogeneous polynomial

aλ = det
({

xλ j
i

}n

i, j=1

)
(1.66)

is divisible by the principle Vandermonde determinant

aδ = det
({

x j−1
i

}n

i, j=1

)
= ∏

1≤i< j≤n
(x j− xi)

in K[x1, . . . ,xn].

1.2.5 Properties of Schur Polynomials
The degree d-Schur polynomial in n-variables is a linear basis for the space of homogeneous d-
degree symmetric polynomials in n-variables [213, 214, 215].

Theorem 1.2.17 ([312]). For a partition λ = (λ1,λ2, . . . ,λn), the Schur polynomial is a sum of
monomials (complete symmetric polynomials)

sλ (x1, . . . ,xn) = ∑
T

xT = ∑
T

xt1
1 xt2

2 · · ·x
tn
n (1.67)

where the summation is over all semi-standard Young Tableaux T of shape λ . The exponents
t1, t2, . . . , tn give the weight T , that is, each ti counts the occurrences of the number i in T .
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Lemma 1.2.18 ([410]). Schur polynomials can be expressed as linear combinations of elementary
symmetric polynomials mµ with non-negative integer coefficients Kλ µ called Kostka number such
that

sλ = ∑
µ

Kλ µmµ (1.68)

where the Kostka numbers Kλ µ are given the number of semi-standard Young Tableaux of shape λ

and weight µ .

Jacobi–Trudi Identities ([312]): The Jacobi–Trudi formulas expresses the Schur polynomial
as a determinant in term of complete homogeneous symmetric polynomials and elementary sym-
metric polynomials such that as summarized in the following lemma.

Lemma 1.2.19 ([440]). The Schur function sλ can be expressed as a polynomial in the elementary
symmetric polynomials er, and as a polynomial in the complete symmetric polynomials hr. The
formulas are respectively,

sλ = det
(
hλi+ j−i

)l(λ )
i, j=1 = det


hλ1 hλ1+1 . . . hλ1+n−1

hλ2−1 hλ2 . . . hλ2+n−2
...

...
. . .

...
hλn−n+1 hλn−n+2 . . . hλn

 (1.69)

where n≥ l(λ ) and hi = s(i), and

sλ = det
(

eλ ′i + j−i

)l(λ ′)

i, j=1
= det


eλ ′1

eλ ′1+1 . . . eλ ′1+n−1

eλ ′2−1 eλ ′2
. . . eλ ′2+n−2

...
...

. . .
...

eλ ′n−n+1 eλ ′n−n+2 . . . eλ ′n

 (1.70)

where m≥ l(λ ′), ei = s(1n) and λ ′ is the conjugate partition to λ .

Giambelli Identity: This determinantal identity expresses the Schur function for an arbitrary
partition in terms of those for the hook partitions contained within the Young diagram [194, 313,
441]. In Frobenius’ notation, the partition is denoted by (a1, . . . ,ar|b1, . . . ,bn) where for each
diagonal element in position ii, ai denotes the number of boxes to the right in the row and bi

denotes the number of boxes beneath in the same column.

Theorem 1.2.20 ([174, 312]). Giambelli identity expresses the Schur function corresponding to
the partition as the determinant

s(a1,...,ar|b1,...,bn) = det
(

s(ai|b j)

)
(1.71)

of those for hook partitions.
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Theorem 1.2.21 ([312] Cauchy Identity). The Cauchy identity for Schur functions in infinitely
many variables and its dual state that

∑
λ

sλ (x)sλ ′(y) = ∑
λ

mλ (x)eλ (y) = ∏
i, j
(1+ xiy j), (1.72)

where the sum is taken over all partitions λ , and hλ (x),eλ (x) denote the complete homogeneous
symmetric polynomials and elementary symmetric polynomials respectively.

If the sum is taken over the products of Schur polynomials in n variables (x1, . . . ,xn), the sum
includes only partitions of length l(λ )≤ n since, otherwise the Schur polynomial vanish.

Further Identities
Lemma 1.2.22 ([312]). The Schur polynomials can also be computed via a specialization of a
formula for Hall–Littlewood polynomials

sλ (x1, . . . ,xn) = ∑
ω∈Sn|Sλ

n

ω

(
xλ

∏
λi>λ j

xi

xi− x j

)
(1.73)

where Sλ
n is the subgroup of permutations such that λω(i) = λi for all i, and ω acts on variables

by permuting indices.

Lemma 1.2.23 ([312], The Murnagham–Nakayama Rule). The Murnaghan–Nakayama rule ex-
presses a product of a power-sum symmetric polynomial with a Schur polynomial, in terms of Schur
polynomials:

pr · sλ = ∑
µ

(−1)ht(µ/λ )+1sµ (1.74)

where the sum is over all partitions µ such that µ/λ is a rim-hook of size r and ht(µ/λ ) is the
number of rows in the diagram µ/λ .

Remark 1.2.24. Let λ = (λ1 ≥ ·· · ≥ λk) be a partition of n = λ1 + · · ·+λk. It is customary to
interpret λ graphically as a Young diagram, namely a left-justified array of square cells with k
rows of lengths λ1, . . . ,λk. A (standard) Young tableau of shape λ is a filling of the n cells of the
Young diagram with all the integers {1, . . . ,n}, with no repetition, such that each row and each
column form increasing sequences. For the cell in position (i, j), in the ith row and jth column, the
hook Hλ (i, j) is the set of cells (a,b) such that a = i and b≥ j or a≥ i and b = j. The hook length
hλ (i, j) is the number of cells in Hλ (i, j).

Definition 1.2.10. [410] The hook length formula expresses the number of standard Young tableaux
of shape λ , denoted by f λ or dλ , as

f λ =
n!

∏hλ (i, j)
,

where the product is over all cells (i, j) of the Young diagram.
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column form increasing sequences. For the cell in position (i, j), in the ith row and jth column, the
hook Hλ (i, j) is the set of cells (a,b) such that a = i and b≥ j or a≥ i and b = j. The hook length
hλ (i, j) is the number of cells in Hλ (i, j).

Definition 1.2.10. [410] The hook length formula expresses the number of standard Young tableaux
of shape λ , denoted by f λ or dλ , as

f λ =
n!

∏hλ (i, j)
,

where the product is over all cells (i, j) of the Young diagram.
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Lemma 1.2.25 ([339] The Littlewood–Richardson rule and Pieri’s formula). The Littlewood–
Richardson coefficients depend on three partitions, say λ ,µ,ν , of which λ and µ describe the
Schur functions being multiplied, and ν gives the Schur function of which this is the coefficient in
the linear combination; in other words they are the coefficients cν

λ ,µ such that

sλ sµ = ∑
ν

cν

λ ,µsν . (1.75)

The Littlewood–Richardson rule states that cν

λ ,µ is equal to the number of Littlewood–Richardson
tableaux of skew shape ν/λ and of weight µ , [41, 194, 313].

Pieri’s formula is a special case of the Littlewood–Richardson rule, which expresses the product
hrsλ in terms of Schur polynomials. The dual version expresses ersλ in terms of Schur polynomials.

Lemma 1.2.26 ([440] Specializations). Evaluating the Schur polynomial sλ in (1,1, . . . ,1) gives
the number of semi-standard Young tableaux of shape λ with entries in 1,2, . . . ,n. One can show,
by using the Weyl character formula for example, that

sλ (1,1, . . . ,1) = ∏
1≤i< j≤n

λi−λ j + j− i
j− i

. (1.76)

In this formula, λ , the tuple indicating the width of each row of the Young diagram, is implicitly
extended with zeros until it has length n. The sum of the elements λi is d. See also the Hook length
formula which computes the same quantity for fixed λ .

Proof. Let x1, . . .xn be indeterminates and using the Schur determinantal formula (1.65):

sλ (x1, . . . ,xn) =
det
(

xλ j+n− j
i

)n

i, j=1

det
(

xn− j
i

)n

i, j=1

(1.77)

First and foremost, it is not possible to evaluate sλ (x) since as xi→ 1 in (1.77) since it leads to the
form 0/0.

Fixing x to be a new indeterminate, arbitrarily, and setting xi = xi−1, then it follows from (1.77)
that we have

sλ (1,x, . . . ,x
n−1) =

det
(
xi(λ j+n− j)

)n
i, j=1

det
(
xi(n− j)

)n
i, j=1

. (1.78)

Now, these two determinants are Vandermonde so that (1.78) gives

sλ (1,x, . . . ,x
n−1) =

∏
1≤i< j≤n

(
x(λi+n−i)− x(λ j+n− j)

)
∏

1≤i< j≤n

(
x(n−i)− x(n− j)

)
= ∏

1≤i< j≤n

xλ j+n− j

xn− j .

(
x((λi−λ j)−( j−i))−1

)(
x( j−i)−1

) .
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Applying l’Hôpital’s rule where lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

provided the derivatives exist, then it follows

that sλ (1,1, . . . ,1) = lim
x→1

sλ (1,x, . . . ,x
n−1)

= ∏
1≤i< j≤n

[
(λ j +n− j)× xλ j+n− j−1

(
x((λi−λ j)−( j−i))−1

)
(n− j)xn− j−1× (x( j−i)−1)

∣∣∣∣
x=1

+
((λi−λ j)− ( j− i))× xλ j+n− j× x((λi−λ j)−( j−i))−1

( j− i)× xn− j× x j−i−1

]∣∣∣∣
x=1

= ∏
1≤i< j≤n

[
(λ j +n− j)×1× (1−1)+((λi−λ j)− ( j− i))×1×1

(n− j)×1× (1−1)+( j− i)×1

]
= ∏

1≤i< j≤n

[
(λi−λ j)− ( j− i)

( j− i)

]
.

Example 1.2.27 ([440]). Consider the case n = 3,d = 4. Using Ferrers diagrams or some other
method, we find that there are just four partitions of 4 into at most three parts. We have

s(2,1,1)(x1,x2,x3) =
1
∆

det

x4
1 x4

2 x4
3

x2
1 x2

2 x2
3

x1 x2 x3

= x1 x2 x3 (x1 + x2 + x3)

s(2,2,0)(x1,x2,x3) =
1
∆

det

x4
1 x4

2 x4
3

x3
1 x3

2 x3
3

1 1 1


= x2

1 x2
2 + x2

1 x2
3 + x2

2 x2
3 + x2

1 x2 x3 + x1 x2
2 x3 + x1 x2 x2

3

and so on, where ∆ is the Vandermonde determinant a(2,1,0)(x1,x2,x3). Summarizing:

s(2,1,1) = e1 e3

s(2,2,0) = e2
2− e1 e3

s(3,1,0) = e2
1 e2− e2

2− e1 e3

s(4,0,0) = e4
1−3e2

1 e2 +2e1 e3 + e2
2.

Every homogeneous degree-four symmetric polynomial in three variables can be expressed as
a unique linear combination of these four Schur polynomials, and this combination can again be
found using a Gröbner basis for an appropriate elimination order. For example,

φ(x1,x2,x3) = x4
1 + x4

2 + x4
3

is obviously a symmetric polynomial which is homogeneous of degree four, and we have

φ = s(2,1,1)− s(3,1,0)+ s(4,0,0).φ = s(2,1,1)− s(3,1,0)+ s(4,0,0).
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1.3 Orthogonal Polynomials
In this section we briefly highlight the occurrence of Vandermonde matrix and its determinant as
basis for derivation of classical orthogonal polynomials.

There is a very close link between random matrix theory (RMT) and the classical theory of
orthogonal polynomials [2, 12, 15, 130, 281, 454] via the Vandermonde determinant which is
expressed by

vn(x) = ∏
1≤i< j≤n

(xi− x j) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

. . .
...

xn−1
1 xn−1

2 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣
(1.79)

It should be noted that the factor product in (1.79) occurs to the power, β = 1,2,4, in the joint eigen-
value probability density (1.153) representing each of the basic Gaussian random matrix ensem-
bles as being orthogonal, unitary and symplectic, respectively. These ensembles, their applications
cannot be overemphasised as already briefly explain in the previous section. The Vandermonde
determinant in (1.79) implies that the joint eigenvalues density (1.153) can be expressed as gener-
alised determinant or a product of determinants. The usefulness of the Vandermonde determinant
and the joint eigenvalue density can be more enriched by re-expressing the determinant in (1.79)
and the corresponding entries of the Vandermonde matrix using other polynomial bases the special
case being

πk(x) = xk + lower order terms (1.80)

for k = 0,1,2, . . .. This is a monic polynomials with basis monomials of the form xk,k = 0,1,2, . . ..
Thus, the elementary column operations on the Vandermonde determinant in (1.79) can equally be
expressed using monomials in (1.80) as

∏
1≤i< j≤n

(
xi− x j

)
=

∣∣∣∣∣∣∣∣∣∣∣

π0(x1) π0(x2) . . . π0(xn)
π1(x1) π1(x2) . . . π1(xn)
π2(x1) π2(x2) . . . π2(xn)

...
...

. . .
...

πn−1(x1) πn−1(x2) . . . πn−1(xn)

∣∣∣∣∣∣∣∣∣∣∣
. (1.81)

where πi(x j), i = 0,1,2, . . . ,n−1; j = 1,2, . . . ,n form a suitable polynomial basis. Thus in studying
the Gaussian ensembles, it turns out that the monic orthogonal polynomials with respect to the
Gaussian weight πi(x j) = exp

(
−x2

j
)
, i = 0,1,2, . . . ,n− 1; j = 1,2, . . . ,n and with measure on R,

the Hermite polynomials are very useful in this case.

1.3.1 Determinantal Representation of Orthogonal Polynomials
Let µ be a measure on the real field R with a moment generating function in the neighbourhood
of 0. Assuming that µ is not fully supported by any finite subset of R, then the space L2(µ) is
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infinite-dimensional, and thus the monomials of the basis B(x) = {1,x,x2,x3,x4, . . .} are linearly
independent as elements of L2(µ). Thus, for any such measure, it follows that the monomial
basis B(x)= {1,x,x2,x3,x4, . . .} can be orthogonalized by the Gram–Schmidt algorithm to produce
orthogonal sets {πn(x)}n≥0 of L2(µ) consisting of polynomials πn(x) of degree n with the real
coefficients such that

〈πn,πm〉=
∫
R

πm(x)πn(x)dµ(x) = δm,n. (1.82)

Up to signs, this condition uniquely specifies the polynomials πn(x) and it is conventional to choose
the signs so that the leading coefficients γn are positive so that the resulting polynomials are the
normalized orthogonal polynomials associated with the measure µ . Thus we can write

pn(x) = γnπn(x), πn(x) = xn + lower order terms. (1.83)

Proposition 1.3.1. The orthogonal polynomials pn(x) and πn(x) are expressed by determinantal
formulas, valid for n≥ 1

πn(x) = Dn(x)/Dn−1,

pn(x) = Dn(x)/
√

DnDn−1,

γn =
√

Dn−1/Dn,

where

Dn(x) = det


m0 m1 m2 . . . mn−1 mn

m1 m2 m3 . . . mn mn+1
...

...
...

. . .
...

...
mn−1 mn mn+1 . . . m2n−2 m2n−1

1 x x2 . . . xn−1 xn

 , (1.84)

Dn = det


m0 m1 m2 . . . mn−1
m1 m2 m3 . . . mn
...

...
...

. . .
...

mn−1 mn mn+1 . . . m2n−2

 , (1.85)

and mn is the nth moment of the measure µ given by

mn =
∫
R

xndµ(x). (1.86)

Consequently, the polynomials pn(x) and πn(x) have real coefficients. Moreover,

Dn =
n

∏
k=1

γ
−2
k =

n

∏
k=0

γ
−2
k . (1.87)
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We notice that the matrices (ai, j) that occur in (1.85) for which ai, j = ai+ j, are called Hankel
matrices while matrices that are constant down diagonals such that ai, j = a j−i are called Toeplitz
matrices.

The monic orthogonal polynomials πn(x) satisfy a simple recursive system of linear equations
called the three-term recurrence. Thus multiplying the monic polynomial πn(x) by x, the resulting
polynomial xπn(x) is again monic and is of degree n+ 1 and it must equal πn+1(x)+ lower order
polynomials which only involve πn(x) and πn−1(x).

Proposition 1.3.2. There exists real terms an and bn so that

xπn(x) = πn+1(x)+anπn(x)+bnπn−1(x). (1.88)

Moreover, the coefficients bn obey

bn =
γ2

n−1

γ2
n

=⇒ γ
2
n =

n

∏
i=1

b−1
n . (1.89)

1.3.2 Vandermonde Determinant and the Christoffel–Darboux For-
mula

As will be discussed in the next section, the Hermite polynomials are both monic and L2-norm 1
relative to the Gaussian measure on R. Some other classical orthogonal polynomial systems have
a similar property, and for such systems it is more convenient to work with normalized orthogonal
polynomials pn(x) than the monic polynomials pin(x) given by (1.83). We notice that from (1.79)
which contains the Vandermonde determinant term ∏

1≤i< j≤n
(x j − xi) as a the determinant of the

matrix of monic polynomials, it can easily be converted to a formula involving the normalized
orthogonal polynomials πn(x). This can be easily achieved by replacing πk(x) by pk(x) in the
determinant by just multiplying the kth row by the factor γ

−1
k . Thus

∆n =

(
n−1

∏
k=0

γ
−1
k

)
det


p0(x1) p0(x2) . . . p0(xn)
p1(x1) p1(x2) . . . p1(xn)
p2(x1) p2(x2) . . . p2(xn)

...
...

. . .
...

pn(x1) pn(x2) . . . pn(xn)

 (1.90)

=
√

Dn−1 det
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γ2
n
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2
n =

n
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b−1
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This leads to the useful formula of the square Vandermonde determinant ∆
2
n which appears espe-

cially in the joint eigenvalue density of the Gaussian unitary ensembles, GUE, and the complex
Wishart ensembles.

Lemma 1.3.1. The square Vandermonde determinant ∆
2
n can be expressed by

∆
2
n = Dn−1 det(Kn(xi,x j))1≤i, j≤n (1.91)

where

Kn(xi,x j) =
n

∑
k=0

pk(xi)pk(x j) (1.92)

This leads to the import result of the Christoffel–Darboux formula that can be stated in the
following lemma

Lemma 1.3.2. The Christoffel–Darboux formula can be expressed by

Kn(x,y) =
πn(x)πn−1(y)−πn(y)πn−1(x)

x− y
. (1.93)

The proof of this Lemma follows directly from the routine calculation of the 3-term recurrence.

1.3.3 Basic Theory of Orthogonal Polynomials
Definition 1.3.1. A sequence of polynomials {πn(x)}∞n=0 with degree[πn(x)] = n for each n is called
orthogonal with respect to the weight function ω(x) on the interval (a,b) with a < b if

∫ b

a
ω(x)πm(x)πn(x)dx = hnδmn with δmn =

{
0, if m 6= n
1, if m = n.

The weight function ω(x) should be continuous and positive on (a,b) such that the moments

µn =
∫ b

a
ω(x)xndx, n = 0,1,2, . . .

exist. Then the integral

〈 f ,g〉=
∫ b

a
ω(x) f (x)g(x)dx

denotes an inner product of the polynomials f and g. The interval (a,b) is called the interval of
orthogonality. The interval (a,b) can be finite or infinite.

If hn = 1 for each n ∈ {0,1,2, . . .} the sequence of polynomials is called orthonormal, and if

πn = knxn + lower order terms

and with with kn = 1 for each n ∈ {0,1,2, . . .} gives the monic polynomials as in (1.80).
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Example 1.3.3. Taking ω(x) = 1 and (a,b) = (0,1) and using Gram–Schmidt orthogonalisa-
tion we can generate the orthogonal polynomials as follows. Starting with the monomial basis
{1,x,x2,x3,x4, . . .} and choosing π0(x) = 1. Then we have

π1(x) = x− 〈x,π0〉
〈π0,π0〉

π0(x) = x− 〈x,1〉
〈1,1〉

= x− 1
2
,

since 〈1,1〉=
∫ 1

0
dx = 1 and 〈x,1〉=

∫ 1

0
xdx = x− 1

2
.

Further we have

π2(x) = x2− 〈x
2,π0〉
〈π0,π0〉

π0−
〈x2,π1(x)〉
〈π1,π1〉

π1(x)

= x2− 〈x
2,1〉
〈1,1〉

−
〈x2,x− 1

2〉
〈x− 1

2 ,x−
1
2〉
(x− 1

2
) = x2− x+

1
6
,

since 〈x2,1〉=
∫ 1

0
x2dx =

1
3

, 〈x2,x− 1
2
〉=

∫ 1

0
x2(x− 1

2
)dx =

1
12

and

〈x− 1
2
,x− 1

2
〉=

∫ 1

0
(x− 1

2
)2dx =

1
12

.

Repeating this process for higher degree terms with respect to the weight ω(x) = 1 we obtain
the following sequence of orthogonal polynomials in the interval (0,1):

π0(x) = 1, π1(x) = x− 1
2
, π2(x) = x2− x+

1
6
,

π3(x) = x3− 3
2

x2 +
3
5

x− 1
20

, π4(x) = x4−2x3 +
9
7

x2− 2
7

x+
1
70

,

π5(x) = x5− 5
2

x4 +
20
9

x3− 5
6

x2 +
5

42
x− 1

252
, . . .

The Classical Orthogonal Polynomials
The main classical orthogonal polynomials are named after the mathematicians Charles Hermite
(1822–1901), Edmand Nicolas Laguerre (1834–1866), Andrien–Marie Legendre (1752–1833) and
Carl Gustav Jacobi (104-1857) [454], as illustrated in the table below:

These classical orthogonal polynomials satisfy an orthogonality relation, a tree term recurrence
relation, a second order differential equation and the famous Rodriguez formula [2].

Hermite Orthogonal Polynomials
The Hermite polynomials are orthogonal on the interval (−∞,∞) with respect to the Gaussian
weight ω(x) = e−

1
2 x2

. The polynomials can be defined based on their Rodriguez formula:

Hn(x) =
(−1)n

ω(x)
Dn

ω(x) = (−1)nex2
Dne−

1
2 x2

, n = 0,1,2, . . . (1.94)
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Name pn(x) weight, ω(x) (a,b)
Hermite Hn(x) e−x2

(−∞,∞)

Laguerre L(α)
n (x) xαe−x (0,∞)

Jacobi J(α,β )
n (x) (1− x)α(1+ x)β (−1,1)

Legendre P(α)
n (x) 1 (−1,1)

Table 1.2: Classical orthogonal polynomials.

where the differentiation operator D is differential operator defined by D =
d
dx

from which we have
the Leibniz’s rule

Dn[ f (x)g(x)] =
n

∑
k=0

(
n
k

)
Dk f (x)Dn−kg(x), n = 0,1,2, . . . (1.95)

which is the generalization of the product rule. Since Dn+1 = DDn, it follows that

Dn+1
ω(x) = (−1)nD[ω(x)Hn(x)] = (−1)n[ω ′(x)Hn(x)+ω(x)H′n(x)]

= (−1)n+1
ω(x)[2xHn(x)−H′n(x)], n = 0,1,2, . . . ,

which gives the relation

Hn+1(x) = 2xHn(x)−H′n(x), n = 0,1,2, . . . (1.96)

From Equation (1.94), it implies H0(x) = 1. Thus, by induction on Equation (1.96) it follows
that Hn(x) is a polynomial of degree n.

To find the three term recurrence relation we proceed from

ω(x) = e−x2
=⇒ ω

′(x) =−2xω(x).

Applying Leibniz’s rule (1.95) we obtain

Dn+1
ω(x) = Dn

ω
′(x) = Dn[−2xω(x)] =−2xDn

ω(x)−2nDn−1
ω(x),

which leads to
Hn+1(x) = 2xHn(x)−2nHn−1(x), n = 1,2, . . . (1.97)

Combining Equations (1.96) and (1.97) we find that

H′n(x) = 2nHn−1(x), n = 1,2,3, . . . (1.98)

Differentiating Equation (1.96) gives

H′n+1(x) = 2xH′n(x)+2Hn(x)−H′′n(x), n = 0,1,2, . . . (1.99)
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Now, using (1.98) and (1.99) to obtain

2(n+1)Hn(x) = 2xH′n(x)+2Hn(x)−H′′n(x), n = 0,1,2, . . . (1.100)

This implies that the Hermite polynomial Hn(x) satisfies the ordinary second order linear differen-
tial equation given by

y′′(x)−2xy′(x)+2ny(x) = 0, n ∈ {0,1,2,3, . . .} (1.101)

The Hermite polynomials has the explicit expression given by

Hn(x) =


n!

n
2

∑
l=0

(−1)
n
2−l

(2l)!
(n

2 − l
)
!
(2x)2l for even n,

n!

n−1
2

∑
l=0

(−1)
n−1

2 −l

(2l +1)!
(n−1

2 − l
)
!
(2x)2l+1 for odd n.

(1.102)

These two equations may be combined into one using the floor function:

Hn(x) = n!
bn

2c
∑

m=0

(−1)m

m!(n−2m)!
(2x)n−2m. (1.103)

The Hermite polynomials Hnx defined in (1.94) satisfy the orthogonality condition such that

1√
π

∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx = 2nn!δmn, m,n ∈ {0,1,2, . . .} (1.104)

The Hermite polynomials (1.94) have the generating function given by

e2xt−t2
=

∞

∑
n=0

Hn(x)
n!

tn (1.105)

Laguerre Orthogonal Polynomials
The Laguerre polynomials are orthogonal on the interval (0,∞) with weight ω(x) = xαe−x. The
Laguerre polynomials can be defined as:

L(α)
n =

1
n!

1
ω(x)

Dn[ω(x)xn] =
1
n!

exx−αDn[e−xxn+α ], n = 0,1,2,3, . . . (1.106)

Employing the Leibniz’ rule in (1.95) to (1.106) gives

Dn[e−xxx+α ] =
n

∑
k=0

(
n
k

)
Dke−xDn−kxn+α

= e−xxα
n

∑
k=0

(−1)k
(

n
k

)
Γ(n+α +1)
Γ(k+α +1)

xk.
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This simplifies to

L(α)
n (x) =

n

∑
k=0

(−1)k
(

n+α

n− k

)
xk

k!
, n = 0,1,2,3, . . . (1.107)

where (
n+α

n− k

)
=

Γ(n+α +1)
(n−1)!Γ(k+α +1)

=
(k+α +1)n−k

(n− k)!
, k = 0,1,2,3, . . . ,n.

This confirms the fact that L((α)
n (x) is a polynomial of degree n.

The orthogonality relation for Laguerre polynomials is given by∫ ∞

0
e−xxαL(α)

m (x)L(α)
n (x)dx =

Γ(n+α +1)
n!

δmn, α >−1 (1.108)

for m,n ∈ {0,1,2, . . .}.
The moment generating function of the Laguerre polynomials (1.106) is defined by

(1− t)−α−1 exp
(
− xt

1− t

)
=

∞

∑
n=0

L(α)
n (x)tn. (1.109)

The three term recurrence relationship for the Laguerre polynomials (1.106) is given by

(n+1)L(α)
n+1(x)+(x−2n−α−1)L(α)

n (x)+(n+α)L(α)
n−1(x) = 0, n = 1,2,3, . . . (1.110)

The Laguerre polynomial L(α)
n (x) satisfies the ordinary second order linear differential equation

xy′′(x)+(α +1− x)y′(x)+ny(x) = 0, n = 0,1,2, . . . (1.111)

Jacobi Orthogonal Polynomials
The Jacobi polynomials are orthogonal on the interval (−1,1) with respect to the Beta distribution
with weight ω(x) = (1− x)α(1+ x)β . The Jacobi polynomials can be expressed as:

P(α,β )
n (x) =

(−1)n

2nn!
1

ω(x)
Dn[ω(x)(1− x2)n]

=
(−1)n

2nn!
(1− x)−α(1+ x)−β Dn

[
(1− x)n+α(1+ x)n+β

]
, (1.112)

for n = 0,1,2,3, . . . Applying the Leibniz’ rule in (1.95) to (1.112) gives

Dn
[
(1− x)n+α(1+ x)n+β

]
=

n

∑
k=0

(
n
k

)
Dk(1− x)n+αDn−k(1+ x)n+β

= n!
n

∑
k=0

(−1)k
(

n+α

k

)(
n+β

n− k

)
(1− x)n+α−k(1+ x)β+k.
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This simplifies to

L(α)
n (x) =

n

∑
k=0

(−1)k
(

n+α

n− k

)
xk

k!
, n = 0,1,2,3, . . . (1.107)

where (
n+α

n− k

)
=

Γ(n+α +1)
(n−1)!Γ(k+α +1)

=
(k+α +1)n−k

(n− k)!
, k = 0,1,2,3, . . . ,n.

This confirms the fact that L((α)
n (x) is a polynomial of degree n.

The orthogonality relation for Laguerre polynomials is given by∫ ∞

0
e−xxαL(α)

m (x)L(α)
n (x)dx =

Γ(n+α +1)
n!

δmn, α >−1 (1.108)

for m,n ∈ {0,1,2, . . .}.
The moment generating function of the Laguerre polynomials (1.106) is defined by

(1− t)−α−1 exp
(
− xt

1− t

)
=

∞

∑
n=0

L(α)
n (x)tn. (1.109)
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(n+1)L(α)
n+1(x)+(x−2n−α−1)L(α)

n (x)+(n+α)L(α)
n−1(x) = 0, n = 1,2,3, . . . (1.110)
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for n = 0,1,2, . . . It follows that

P(α,β )
n (x) =

(−1)n

2n

n

∑
k=0

(−1)k
(

n+α

k

)(
n+β

n− k

)
(1− x)n−k(1+ x)k, n = 0,1,2,3, . . . (1.113)
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n (x) is a polynomial of degree n.

The orthogonality relation for Jacobi polynomials is given by∫ 1

−1
(1− x)α(1+ x)β P(α,β )

m (x)P(α,β )
n (x)dx =

2α+β+1Γ(n+α +1)Γ(n+β +1)
(2n+α +β +1)Γ(n+α +β +1)n!

δmn, (1.114)

for α >−1,β >−1 m,n ∈ {0,1,2, . . .}.
The three term recurrence relationship for the Jacobi polynomials (1.112) is given by

2n(n+α +β )(2n+α +β −2)Pα,β
n (x)

=(2n+α +β −1)
{
(2n+α +β )(2n+α +β −2)x+α

2−β
2}Pα,β

n−1(x) (1.115)

−2(n+α−1)(n+β −1)(2n+α +β )Pα,β
n−2(x), n = 2,3,4, . . .

The Jacobi polynomial P(α,β )
n (x) satisfies the ordinary second order linear differential equation

(1− x2)y′′(x)+ [β −α− (α +β +2)x]y′(x)+n(n+α +β +1)y(x) = 0, n = 0,1,2, . . . (1.116)

The moment generating function of the Jacobi polynomials (1.112) is defined by

2α+β

R(1+R− t)α(1+R+ t)β
=

∞

∑
n=0

P(α,β )
n (x)tn, R =

√
1−2xt + t2. (1.117)

Legendre Orthogonal Polynomials
The Legendre polynomials are a special case of Jacobi polynomials with (α = 0 = β ) with respect
to the weight ω(x) = 1. The polynomials can be written using their corresponding Rodriguez
formula:

Pn(x) =
(−1)n

2nn!
1

ω(x)
Dn[ω(x)(1− x2)n] =

(−1)n

2nn!
(1− x2)n, n = 0,1,2,3, . . . (1.118)

The orthogonality relation for Legendre polynomials is given by∫ 1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn, m,n ∈ {0,1,2, . . .} (1.119)

The moment generating function of the Jacobi polynomials (1.118) is defined by

1√
1−2xt + t2

=
∞

∑
n=0

Pn(x)tn. (1.120)
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The three term recurrence relationship for the Legendre polynomials (1.118) is given by

(n+1)Pn+1(x)− (2n+1)xPn(x)+nPn−1(x) = 0, n = 1,2,3, . . . (1.121)

The Legendre polynomial Pn(x) satisfies the ordinary second order linear differential equation

(1− x2)y′′(x)−2xy′(x)+n(n+1)y(x), n = 0,1,2, . . . (1.122)

1.4 Applications and Occurrences of the Vandermonde
Matrix and its Determinant

In this section we give a brief overview of the occurrences and applications of the Vandermonde
matrix and its determinant in real life as applies to Mathematical analysis and computation.

The Vandermonde matrix and its corresponding determinant has numerous numerical applica-
tions. These applications are mainly due to the systematic structure of the matrix and simplicity of
the expression of the determinant. Here we will discuss applications where we want to optimize the
Vandermonde determinant over various surfaces. We will construct a generalized Vandermonde in-
terpolating polynomial using divided differences interpolation polynomial based on the generalized
Vandermonde determinant approach. Some results regarding the appropriateness for this method
for curve-fitting and approximation will be discussed.

Polynomial interpolation is mostly used when the data set we wish to interpolate is small.
The main reason for this is the instability of the interpolation method. One example of this is
Runge’s phenomenon that shows that when certain functions are approximated by polynomial in-
terpolation fitted to equidistantly sampled points will sometimes lose precision when the number
of interpolating points is increased. One way to predict this instability of polynomial interpolation
is that the conditional number of the Vandermonde matrix can be very large for equidistant points
[184, 187, 188, 189, 190]. There are different ways to mitigate the issue of stability, for exam-
ple choosing data points that minimize the conditional number of the relevant matrix [184] or by
choosing a polynomial basis that is more stable for the given set of data points such as Bernstein
polynomials in the case of equidistant points [361]. Other polynomial schemes can also be consid-
ered, for instance by interpolating with different basis functions in different intervals, for example,
using polynomial splines [416].

While the instability of polynomial interpolation does not prevent it from being useful for an-
alytical examinations it is generally considered impractical when there is noise present or when
calculations are performed with limited precision. Often interpolating polynomials are not con-
structed by inverting the Vandermonde matrix or calculating the Lagrange basis polynomials, in-
stead a more computationally efficient method such as Newton interpolation or Neville’s algorithm
are used [383]. There are some variants of Lagrange interpolation, such as barycentric Lagrange
interpolation, that have good computational performance [39].

In applications where the data is noisy it is often suitable to use least squares fitting, instead of
interpolation.
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Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

Since most our research study is mainly centred at the extreme points of the Vandermonde
determinant as will be discussed in Chapters 2 to 9. It is very important at this moment to give a
brief highly of the major occurrences and applications Vandermonde matrix and its determinant in
mathematical context. These applications are mainly due to the systematic structure of the matrix
and simplicity of the expression of the determinant as discussed in the previous sections. In most
of the applications the Vandermonde determinant takes the central advantage due to the fact that it
can be optimized globally, on various surfaces or boundaries. This makes the extreme points of the
Vandermonde determinant of great significance in all the major applications that will be outlined
in the following subsections.

1.4.1 Polynomial Interpolation
The process of fitting n−1 degree polynomial to the points (x1,y1), (x2,y2), · · · , (xn,xn) is usually
referred to as polynomial interpolation [257]. If the polynomial is

p(x) = c0 + c1x+ c2x2 + · · ·+ cn−1xn−1, (1.123)

then, the coefficients ci may be determined by solving the equation p(xk) = yk,k = 1,2, · · · ,n. The
Vandermonde matrix can be used to describe this type of interpolation problem [24, 25] simply by
writing the equation system given by p(xk) = yk as a matrix equation

1 x1 x2
1 · · · xn−1

1
1 x2 x2

2 · · · xn−1
2

1 x3 x2
3 · · · xn−1

3
...

...
. . .

...
...

1 xn x2
n · · · xn−1

n




c0
c1
c2
...

cn−1

=


y1
y2
y3
...

yn

 (1.124)

We observe that the system matrix is indeed a transposed Vandermonde matrix in (1.11) and
that its determinant is connected to the solvability of the system (1.124). By the Vandermonde
determinant identity (1.8), the determinant is non-zero if the values of xi are distinct, in which case
the coefficients of qi are uniquely determined. In fact, q(x) can be explicitly formulated in this case
as follows. Let

Q(x) = det



1 1 · · · 1 1
x1 x2 · · · xn x
x2

1 x2
2 · · · xn x2

...
...

. . .
...

...
xn−1

1 xn−1
2 · · · xn−1 xn−1

y1 y2 · · · yn 0


Then, Q(xi) may be found by replacing x and xi in the last column of the matrix. Subtracting
column i from the last column now produces entries of 0, except for the last entry which is −yi.
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Consequently, Q(xi) = (−det(Vn))yi and so

p(x) =
−1

det(V)
Q(x) (1.125)

Here, the Vandermonde determinant is of obvious significance. We notice that if xi are not dis-
tinct, then Q(xi) = 0 for all i and the system (1.124) has a singular matrix. Moreover, polynomial
interpolation is not meaningful if the xi are not distinct.

There are several ways to construct the interpolating polynomial without explicitly inverting
the Vandermonde matrix, for instance in [484].

The idea behind Lagrange interpolation is simple, construct a set of n polynomials {p1, · · · , pn}
such that

pi(x j) =

{
0 if i 6= j,
1 if i = j,

and then construct the final interpolating polynomial by the sum of these pi weighted by the corre-
sponding yi.

The pi polynomial are called Lagrange basis polynomial and can easily be constructed by
placing the roots appropriately and then normalizing the result such that pi(x) = 1, this gives the
expression

li(x) =
(x− x1) · · ·(x− xk−1)(x− xk+1) · · ·(x− xn)

(xi− x1) · · ·(xi− xk−1)(xi− xk+1) · · ·(xi− xn)
(1.126)

The explicit formula for the full interpolating polynomial is

p(x) =
n

∑
k=1

yk
(x− x1) · · ·(x− xk−1)(x− xk+1) · · ·(x− xn)

(xi− x1) · · ·(xi− xk−1)(xi− xk+1) · · ·(xi− xn)
(1.127)

and from this formula the expression for the inverse of the Vandermonde matrix can be found by
noting that the jth row of the inverse will consist of the coefficients of p j, the resulting expression
for the elements given in above.

The equation (1.126) is considered to give the error approximation based on Lagrange interpo-
lating polynomial [285, 484].

Theorem 1.4.1. The interpolating polynomial through the points (xi, f (xi)), i = 1,2, . . . ,n is given
by

P(x) =
n

∑
i=1

ω(x)
(1− xi)ω ′(xi)

f (xi) =
n

∑
i=1

f (xi)
ni

∏
j=1

x− x j

xi− x j
≡ L>U, (1.128)

where prime means the derivative with respect to x,

L =

[
ni

∏
j=1

x− x j

xi− x j

]>
, and ω(x) =

n

∏
j=1

(t− t j).
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By decomposition of the Vandermonde matrix in the form [277]:

V>VC = V>U where V = [T1T2 . . .Tn]
>,

and Ti is the vector given by Ti = [1, ti, t2
i , . . . , t

n−1
i ]> and U = [ fi] = [ f (xi)] for simplicity. If we

seek the polynomial of degree (n−1) which yields the least squares fit to { fi}n
i=1, necessitates an

n dimensional constant vector C such that C attains

minC
n

∑
i=1

( fi−C>Ti)
2.

Thus, we can obtain the matrix expression for (1.128) as

P(x) =
[
V−1UT

]
= T>V−1U (1.129)

where L> = T>V−1 which can be directly obtained from Equations (1.14) and (1.16).

The Error in Polynomial Interpolation
Our goal here is to provide estimates on the “error” we make when interpolating data that is taken
from sampling an underlying function f (x). While the interpolant and the function agree with each
other at the interpolation points, there is, in general, no reason to expect them to be close to each
other elsewhere. Nevertheless, we can estimate the difference between them, a difference which
we refer to as the interpolation error, for more details see [21, 150, 151, 230, 308, 382, 453].

We let Πn denote the space of polynomials of degree ≤ n, and let Cn+1[a,b] denote the space
of functions that have n+1 continuous derivatives on the interval [a,b].

Theorem 1.4.2. Let f (x) ∈ Cn+1[a,b] and Qn(x) ∈ Πn such that it interpolates f (x) at the n+ 1
distinct points x0, · · · ,xn ∈ [a,b]. Then for all x ∈ [a,b], there exists ξn ∈ (a,b) such that

f (x)−Q(x) =
1

(n+1)!
f (n+1)(ξn)

n

∏
j=0

(x− x j). (1.130)

This is a well-known theorem, its proof can be found in [101] and many other texts.

Lebesgue Function and Lebesgue Constants
Given X = {x j, j = 0,1,2, · · · ,n; ∈ N} be a set of n+ 1 distinct interpolation points (or nodes)
on the real interval [−1,1] such that −1 ≤ x0 < x1 < · · · < xn ≤ 1. We define a f ∈C[−1,1] such
that when approximating f from a finite-dimensional Vn = span{φ0,φ1, · · · ,φn} with φi ∈C[−1,1]
for 0 ≤ i ≤ n, then there exists at least one element p∗n ∈ Vn that is close to f . When using the
‖ f‖∞ = max

x∈[−1,1]
| f (x)| approximation criteria [335, 379], the element p∗n is the closest one if the

φ0,φ1, · · · ,φn are a Tchebychev system.
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We are interested in the interpolation points x j that make the interpolation error [101]∥∥∥∥∥ f (x)−
n

∑
i=0

αiφi(xi)

∥∥∥∥∥= max
x∈[−1,1]

∣∣∣∣∣ f (x)− n

∑
i=0

αiφi(xi)

∣∣∣∣∣
as small as possible. In other words, there is an interest in using the interpolating polynomials that
are near best approximants [416].

When for instance, we consider the monomials φi(x) = xi and f to be sufficiently differentiable

say f ∈Cn+1[−1,1], then the interpolant pn(x) =
n

∑
i=0

αix j satisfying pn(x j) = f (x j), 0≤ j ≤ n, the

error ‖ f − pn‖ is bounded such that from (1.130), we have

‖ f − pn‖∞ ≤ max
x∈[−1,1]

(
| f n+1(x)|
(n+1)!

)
max

x∈[−1,1]

n

∏
j=0
|x− x j|. (1.131)

Throughout this study, we will refer to the inequality (1.131) the first interpolating error formula
[101, 416]. It is well known that ‖(x− x0)(x− x1) · · ·(x− xn)‖∞ is minimal on [−1,1] if the x j are
the zeroes of the (n+1)th-degree Tchebychev polynomial Tn+1(x) = cos((n+1)arccosx).

The operator that associates with f its interpolant pn is linear and given by

Pn[x0, · · · ,xn] : C([−1,1])→ Vn : f (x)→ pn(x) =
n

∑
i=0

f (xi)li(x), (1.132)

where the basic Lagrange polynomial [449, 450, 475, 476] expressed in (1.126). So another bound
for the interpolation error is given by

‖ f − pn‖∞ ≤ (1+‖Pn‖)‖ f − p∗n‖∞, ‖Pn‖= max
x∈[−1,1]

n

∑
i=0
|li(x)|

where Pn := Pn[x0, · · · ,xn] is the linear operator defined by (1.132), and p∗n is the best uniform
polynomial approximation to f .

Definition 1.4.1. For a fixed n∈N and a given x0, · · · ,xn, the Lebesgue function [67, 68] is defined
by:

Ln(x) = Ln(x0, · · · ,xn;x) =
n

∑
i=1
|li(x)|,

and the Lebesgue constant [211, 212] is defined by:

Λn = Λn(x0, · · · ,xn) = max
−1≤x≤1

n

∑
i=1
|li(x)|.
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It can be clearly seen that both Ln(x) and Λn depend on the location of the interpolation points
x j as well as on the degree n but not necessarily on the function values f (xi). It should also be
noted that the operator norm of Pn defined in (1.132) is equal to the infinity norm of the Lebesgue
function [160, 335, 397]:

‖Pn‖∞ = λn = max
−1≤x≤1

Ln(x).

In the general setting, let Ω ⊂ Rd(or Cd) be a compact set, for example, Ω = [−1,1]2 ⊂ R2

or Ω = [−1,1]3 ⊂ R3, as in the case of triangle and spheres respectively [385]. Let ξ1, · · · ,ξN in
Ω be the interpolating points. With the monomials φi = φ(ξi) = φ(ξ1, · · · ,ξN) which are given by
φi = ξ

α1(i)
1 , · · · ,ξ αn(i)

N = xα(i), N = dim(ΦN
n (Ω)) in a certain order (ξξξ ,ααα ∈Rn(or Cd)). We construct

the Vandermonde matrix V (ξξξ ,φφφ) = [φ j(ξi)] and det(V ) 6= 0. We define the determinantal Lagrange

formula [73, 177, 294, 485], by Πn f (x) =
N

∑
j=1

f (ξ j)l j(x), where

l j(x j) =
det[V (ξ1, · · · ,ξ j−1,x,ξ j+1, · · · ,ξN)]

det[V (ξ1, · · · ,ξ j−1,ξ j,ξ j+1, · · · ,ξN)]
, l j(ξi) = σi j.

1.4.2 Fekete points
When a function is approximated by a polynomial using interpolation the approximation error de-
pends on the chosen interpolation points. The Fekete points is a set of points that provide an almost
optimal choice of interpolation points [409] and they are given by maximizing the Vandermonde
determinant. Fekete points deeply discussed in [13, 83, 272, 273, 387, 388] and by definition:

Definition 1.4.2. The Fekete Points are classical optimal interpolating points that maximize the ab-
solute value of the Vandermonde determinant, that is, max |vn(x1, · · · ,xn)| over the compact subset
or manifold Ω⊂ Rd (or Cd), where x1, · · · ,xn, vn(x1, · · · ,xn) and | · | is the absolute value.

Taking the logarithm of the expression for the Vandermonde determinant given in (1.8) gives

log
(
vn(x1, . . . ,xn)

)
= ∑

1≤i< j≤n
log(x j− xi)

and thus −1
2

log
(
vn(x1, . . . ,xn)

)
gives the same as setting g(x) = log(x) and V(x)≡ 0 in

HN(x1, . . . ,xN) =
1
2 ∑

i6= j
g(xi− x j)+N

N

∑
i=1

V(xi). (1.133)

the Coulombs law which states that the force between two charged particles is proportional to the
product of the charges and the inverse of the square of the distance between the two charges [96].
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Finding the Fekete points are also of interest in complexity theory and would help with find-
ing an appropriate starting polynomial for a homotopy algorithm for realizing the Fundamental
Theorem of Algebra [426, 428].

Considering a compact domain Ω⊂ Rd(or Cd), it should be noted that the determinant of the
Vandermonde matrix constructed with respect to the polynomial basis {φk} is key in determining
a set for good interpolation points called the Fekete points deeply discussed in [13, 83, 272, 273,
387, 388].

To compute the Lebesgue constant [475, 476], we discretize the subset Ω ∈ Rn with a “grid”
G⊂Ω containing K well spaced points such that

Λ = max
x∈Ω

N

∑
i=1
|li(x)| → Λ≈max

x∈G

N

∑
i=1
|li(x)|

The above results can be summarized in the following theorem:

Theorem 1.4.3 ([457]). Let x0,x1, · · · ,xn be n+1 distinct points on [a,b]. The linear polynomial Pn

which in is C[a,b] associates with any function f the polynomial Pn f ∈ Pn interpolates f between
the x′ks has the form

‖Pn‖= Λn = max
x∈[a,b]

n

∑
k=0
|lk(x)|.

A common generalisation of the Fekete points is the case where multivariate polynomials are
used, see for example [57, 64, 322]. The case where and points in Cd are interpolated have also
been examined, an example of a recent significant results is [38] and a review can be found in [48].

Polynomial interpolation is mostly used when the data set we wish to interpolate is small. The
main reason for this is the instability of the interpolation method. One example of this is Runge’s
phenomenon that shows that when certain functions are approximated by polynomial interpolation
fitted to equidistantly sampled points will sometimes lose precision when the number of interpo-
lating points is increased.

One way to predict this instability of polynomial interpolation is that the conditional number
of the Vandermonde matrix can be very large for equidistant points [184, 187, 188, 189, 190].

There are different ways to mitigate the issue of stability, for example choosing data points
that minimize the conditional number of the relevant matrix [187, 188, 189, 190] or by choosing a
polynomial basis that is more stable for the given set of data points such as Bernstein polynomials
in the case of equidistant points [361]. Other polynomial schemes can also be considered, for
instance by interpolating with different basis functions in different intervals, for example using
polynomial splines.

While the instability of polynomial interpolation does not prevent it from being useful for an-
alytical examinations it is generally considered impractical when there is noise present or when
calculations are performed with limited precision. Often interpolating polynomials are not con-
structed by inverting the Vandermonde matrix or calculating the Lagrange basis polynomials, in-
stead a more computationally efficient method such as Newton interpolation or Neville’s algorithm
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are used [383]. There are some variants of Lagrange interpolation, such as barycentric Lagrange
interpolation, that have good computational performance [39].

In applications where the data is noisy it is often suitable to use least squares fitting, instead of
interpolation.

B-Spline Fitting

The most popular application of the divided differences operator is the construction of so called
B-splines, piecewise polynomial functions that allow for very efficient storage and computation of
a variety of shapes. The concept of (mathematical) splines first appeared in the 1940s [414, 415]
and B-splines were developed in the 1960s and 1970s [42, 104, 105, 106]. We can define a B-spline
using the divided differences as follows.

Definition 1.4.3. Given a sequence, · · · ≤ t−1 ≤ t0 ≤ t1 ≤ t2 ≤ ·· · we can define the kth B-spline of
order m as

Bk,m(x) =

{
(−1)m[tk, . . . , tk+m]gk(x, t), if tk ≤ x≤ tk+1,

0, otherwise,

where

gk(x, t) =

{
(x− t)k−1, if x≥ t,
0, otherwise.

and the divided difference operator acts with respect to t.

Remark 1.4.4. There are several different ways to define B-splines, above we followed the def-
inition in [416]. In modern literature it is more common that B-splines and their computation
are described from the perspective of so-called blossoms [178, 389, 390] rather that the divided
difference description.

B-splines can be used for many things, for example approximation theory [324], geometric
modelling [88] and wavelets construction [178].

If we want to do linear interpolation and use some other set of basis functions other than the
monomials, then we need to define a generalized version of the divided difference operator.

Definition 1.4.4. Given a set of m linearly independent functions, G = {gi}, and n values, x0, . . . ,xn,
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then the generalized divided differences operator that acts on a function f (x) is defined as

[x0,x1]G f (x) =

∣∣∣∣∣∣∣∣∣
g1(x1) . . . gn−1(x1) f (x1)
g1(x2) . . . gn−1(x2) f (x2)

...
. . .

...
...

g1(xn) . . . gn−1(xn) f (xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g1(x1) . . . gn(x1)
g1(x2) . . . gn(x2)

...
. . .

...
g1(xn) . . . gn(xn)

∣∣∣∣∣∣∣∣∣
Remark 1.4.5. We mentioned previously that the divided difference operator can be used to con-
struct B-splines and using the generalized divided difference operator similar tools can be con-
structed using other sets functions than polynomials as a basis, see for example [310].

Finding the Fekete points are also of interest in complexity theory and would help with find-
ing an appropriate starting polynomial for a homotopy algorithm for realizing the Fundamental
Theorem of Algebra [426, 428].

In Chapter 3 we will discuss how to find the maximum points of the Vandermonde determinant
for certain special cases. A common generalisation of the Fekete points is the case where mul-
tivariate polynomials are used, see for example [57, 64, 322]. The case where and points in Cd

are interpolated have also been examined, an example of a recent significant results is [38] and a
review can be found in [48].

Integration of an exponential function over a unitary group
If we let U(n) be the n-dimensional unitary group and dU the Haar measure normalised to 1 then
the Harish-Chandra–Itzykson–Zuber integral formula [217, 249], says that if A and B are Hermitian
matrices with eigenvalues λ1(A)≤ λ2(A)≤ . . .≤ λn(A) and λ1(B)≤ λ2(B)≤ . . .≤ λn(B), then

∫
U(n)

exp(ttr(AUBU?))dU =
det
([

exp
(
tλ j(A)λk(B)

)]n,n
j,k

)
t

n(n−1)
2 vn

(
λ (A)

)
vn
(
λ (B)

) n−1

∏
i=1

i! (1.134)

where vn(·) is the determinant of the Vandermonde matrix. If t = 1 and A and B are chosen as
diagonal matrices such that

Ai j =

{
ai, if i = j,
0, if i 6= j.

Bi j =

{
bi, if i = j,
0, if i 6= j.
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then formula (1.134) reduces to an expression involving determinants of a generalized Vander-
monde matrix and two Vandermonde matrices,

∫
U(n)

(ttr(AUBU?))dU =

∣∣∣∣∣∣∣∣∣
ea1b1 ea1b2 . . . ea1bn

ea2b1 ea2b2 . . . ea2bn

...
... . . .

...
eanb1 eanb2 . . . eanbn

∣∣∣∣∣∣∣∣∣
vn(a1, . . . ,an)vn(b1, . . . ,bn)

.

1.4.3 Divided Differences
The coefficients of an interpolating polynomial could be computed by inverting the Vandermonde
matrix or using the Lagrange basis polynomials. Another method for the coefficients of the poly-
nomials is based on a computation called divided differences.

Definition 1.4.5. Let x0, . . . ,xn then the divided differences operator that acts on a function f (x) is
defined as

[x0, . . . ,xn] f (x) =

 f (x0), if n = 0,
[x1, . . . ,xn] f (x)− [x0, . . . ,xn−1] f (x)

xn− x1
, if n > 0.

The reason that the divided difference operator is interesting in polynomial interpolation is that
if we apply it to two distinct points, x0 and x1, and a function f (x) then the result is the slope of a
line that passes through the two points (x0, f (x0)) and (x1, f (x1)),

[x0,x1] f (x) =
[x1] f (x)− [x0] f (x)

x1− x0
=

f (x1)− f (x0)

x1− x0
.

A line that passes through the two points can then be constructed like this

p(x) = f (x0)+(x− x0)[x0,x1] f (x).

It can similarly be shown that a polynomial that interpolates a set of points

(x0, f (x0)), . . . ,(xn, f (xn))

can be written

p(x) = f (x0)+(x− x0)[x0,x1] f (x)+(x− x0)(x− x1)[x0,x1,x2] f (x)+ . . .

=+(x− x0) . . .(x− xn−1)[x0, . . . ,xn] f (x)

This method for interpolation is usually referred to as Newton interpolation and is probably the
most well-known application of divided differences. In some literature, for example, see [103, 104,
105], this property is even used as a definition for divided differences.
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Since we expect to find the same polynomial whether we use the Lagrange interpolation method
described in the previous or the Newton interpolation method described above we also expect there
to be some relation between the divided difference operator and the Vandermonde determinant.
Turns out there is a fairly simple relation, see [416] for details.

Lemma 1.4.6. The divided difference operator defined in Definition 1.4.5 can also be written as

[x0,x1] f (x) =

∣∣∣∣∣∣∣∣∣∣∣

1 x0 . . . xn−1
0 f (x0)

1 x1 . . . xn−1
1 f (x1)

...
...

. . .
...

...
1 xn . . . xn−1

n f (xn)
1 x . . . xn−1 f (x)

∣∣∣∣∣∣∣∣∣∣∣
vn(x0,x1, . . . ,xn,x)

n

∏
i=0

(x− xi). (1.135)

where vn(x0,x1, . . . ,xn,x) denotes the Vandermonde determinant.

The divided differences operator can also be used to describe the error that one gets when a
function is approximated by interpolating with a polynomial, the following lemma is from [274].

Lemma 1.4.7. Let p(x) be a polynomial of degree smaller than or equal to n that interpolates the
points { f (xi, f (xi)), i = 0, . . . ,n}. For any x 6= xi, i = 0, . . . ,n the error f (x)− p(x) is given by

f (x)− p(x) = [x0, . . . ,xn,x] f (x)
n

∏
i=0

(x− xi).

Combining Lemma 1.4.6 and Lemma 1.4.7 gives

f (x)− p(x) =

∣∣∣∣∣∣∣∣∣∣∣

1 x0 . . . xn−1
0 f (x0)

1 x1 . . . xn−1
1 f (x1)

...
...

. . .
...

...
1 xn . . . xn−1

n f (xn)
1 x . . . xn−1 f (x)

∣∣∣∣∣∣∣∣∣∣∣
vn(x0,x1, . . . ,xn,x)

n

∏
i=0

(x− xi).

which gives some insight to why the value of the Vandermonde determinant is important when
choosing interpolation points.

Another popular application of the divided differences operator is the construction of so called
B-splines, piecewise polynomial functions that allow for very efficient storage and computation of
a variety of shapes. The concept of (mathematical) splines first appeared in the 1940s [414, 415]
and B-splines were developed in the 1960s and 1970s [42, 104, 105]. We can define a B-spline
using the divided differences as follows.
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Definition 1.4.6. Given a sequence, · · · ≤ t−1 ≤ t0 ≤ t1 ≤ t2 ≤ ·· · we can define the kth B-spline of
order m as

Bk,m(x) =

{
(−1)m[tk, . . . , tk+m]gk(x, t), if tk ≤ x≤ tk+1,

0, otherwise,

where

gk(x, t) =

{
(x− t)k−1, if x≥ t,
0, otherwise.

and the divided difference operator acts with respect to t.

Remark 1.4.8. There are several different ways to define B-splines, above we followed the def-
inition in [416]. In modern literature it is more common that B-splines and their computation
are described from the perspective of so-called blossoms [178, 389, 390] rather that the divided
difference description.

B-splines can be used for many things, for example approximation theory [324], geometric
modelling [88] and wavelets construction [178].

If we want to do linear interpolation and use some other set of basis functions other than the
monomials, then we need to define a generalized version of the divided difference operator.

Definition 1.4.7. Given a set of m linearly independent functions, G= {gi}, and n values, x0, . . . ,xn,
then the generalized divided differences operator that acts on a function f (x) is defined as

[x0,x1]G f (x) =

∣∣∣∣∣∣∣∣∣
g1(x1) g2(x1) . . . gn−1(x1) f (x1)
g1(x2) g2(x2) . . . gn−1(x2) f (x2)

...
...

. . .
... vdots

g1(xn) g2(xn) . . . gn−1(xn) f (xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g1(x1) g2(x1) . . . gn(x1)
g1(x2) g2(x2) . . . gn(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gn(xn)

∣∣∣∣∣∣∣∣∣
Remark 1.4.9. We mentioned previously that the divided difference operator can be used to con-
struct B-splines and using the generalized divided difference operator similar tools can be con-
structed using other sets functions than polynomials as a basis, see for example [310].
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1.4.4 Least Squares Fitting
Suppose we want to find a function

f (x) =
N

∑
i=1

βigi(x) (1.136)

that fits as well as possible in the least squares sense to the data points (xi,yi), i = 1, . . . ,n. We then
get a curve or polynomial fitting problem described by the linear equation system Aβββ = y where
βββ are the coefficients of f , y is the vector of data values and A is the appropriate alternant matrix,
and these can be expressed as

A =


g1(x1) g2(x1) . . . gN(x1)
g1(x2) g2(x2) . . . gN(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gN(xn)

 , βββ =


β1
β2
...

βn

 , y =


y1
y2
...

yn

 .
This is an overdetermined version of the linear interpolation described in the previous section.

How can we actually find the coefficients that minimize the sum of the squares of the residuals?
First we can define the square of the length of the residual vector, e = Aβββy, as a function

S(e) = e>e =
n

∑
i=1
|ei|2 = (Aβββ )>(Aβββ ).

where (·)> is the transpose of the matrix. This kind of function is a positive second degree polyno-

mial with no mixed terms and thus has a global minima where
∂S(e)

∂ei
= 0 for all 1≤ i≤ n. We can

find the global minima by looking at the derivative of the function, ei is determined by βi and

∂ei

∂βi
= Ai, j

thus
∂S(e)
∂βi

=
n

∑
i=1

2ei
∂ei

∂βi
=

n

∑
i=1

2(Ai,.βββ − yi)Ai, j = 0 ⇔ A>Aβββ = A>y.

This gives
βββ = (A>A)−1A>y

and by the Gauss-Markov theorem of [182, 183, 319, 406] for a more modern description, if
(A>A)−1 exists then (19) gives the linear, unbiased estimator that gives the lowest variance possi-
ble for any linear, unbiased estimator. The matrix given by (A>A)−1A> is sometimes referred to
as the Moore-Penrose pseudo-inverse of A.

Clearly a linear curve fitting model with gi(x) = xi−1 gives an equation system described by a
rectangular Vandermonde matrix.

83

Applications and Occurrences of the Vandermonde Matrix and its Determinant

1.4.4 Least Squares Fitting
Suppose we want to find a function

f (x) =
N

∑
i=1

βigi(x) (1.136)

that fits as well as possible in the least squares sense to the data points (xi,yi), i = 1, . . . ,n. We then
get a curve or polynomial fitting problem described by the linear equation system Aβββ = y where
βββ are the coefficients of f , y is the vector of data values and A is the appropriate alternant matrix,
and these can be expressed as

A =


g1(x1) g2(x1) . . . gN(x1)
g1(x2) g2(x2) . . . gN(x2)

...
...

. . .
...

g1(xn) g2(xn) . . . gN(xn)

 , βββ =


β1
β2
...

βn

 , y =


y1
y2
...

yn

 .
This is an overdetermined version of the linear interpolation described in the previous section.

How can we actually find the coefficients that minimize the sum of the squares of the residuals?
First we can define the square of the length of the residual vector, e = Aβββy, as a function

S(e) = e>e =
n

∑
i=1
|ei|2 = (Aβββ )>(Aβββ ).

where (·)> is the transpose of the matrix. This kind of function is a positive second degree polyno-

mial with no mixed terms and thus has a global minima where
∂S(e)

∂ei
= 0 for all 1≤ i≤ n. We can

find the global minima by looking at the derivative of the function, ei is determined by βi and

∂ei

∂βi
= Ai, j

thus
∂S(e)
∂βi

=
n

∑
i=1

2ei
∂ei

∂βi
=

n

∑
i=1

2(Ai,.βββ − yi)Ai, j = 0 ⇔ A>Aβββ = A>y.

This gives
βββ = (A>A)−1A>y

and by the Gauss-Markov theorem of [182, 183, 319, 406] for a more modern description, if
(A>A)−1 exists then (19) gives the linear, unbiased estimator that gives the lowest variance possi-
ble for any linear, unbiased estimator. The matrix given by (A>A)−1A> is sometimes referred to
as the Moore-Penrose pseudo-inverse of A.

Clearly a linear curve fitting model with gi(x) = xi−1 gives an equation system described by a
rectangular Vandermonde matrix.

83

83



Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

If it is not necessary to exactly reproduce the series of data points a commonly applied alter-
native to interpolation is least squares fitting. A least squares fitting of a mathematical model to a
set of data points { f (xi,yi), i = 1, . . . ,n} is the choice of parameters of the model, here denoted βββ ,
chosen such that the sum of the squares of the residuals

S(βββ ) =
N

∑
i=1

(yi− f (βββ ;xi))

is minimized. This choice is appropriate if data series is affected by independent and normally
distributed noise.

The most wide-spread form of least squares fitting is linear least squares fitting where, analo-
gously to linear interpolation, the function f (βββx) depends linearly on βββ . This case has a unique
solution that is simple to find. It is commonly known as the least squares method and we describe
it in detail in the next section. With a non-linear f (βββ ;x) it is usually much more difficult to find the
least squares fitting and often numerical methods are used, for example the Marquardt least squares
method.

Non-linear Least Squares Fitting
So far we have only considered models that are linear with respect to the parameters that specify
them. If we relax the linearity condition and simply consider fitting a function with m parameters,
f (β1, . . . ,βn;x), to n data points in the least squares sense it is usually referred to as a non-linear
least squares fitting.

There is no general analogue to the Gauss-Markov theorem for non-linear least squares fitting
and therefore finding the appropriate estimator requires more knowledge about the specifics of the
model. In practice non-linear least squares fittings are often found using some numerical method
for non-linear optimization of which there are many, see for instance [406] for details.

1.4.5 Regression Analysis and Data Smoothing
In this thesis we will discuss several ways to construct mathematical models. With several mathe-
matical models available it is needed to have some method for comparing the methods and choose
the most suitable one. When the model in constructed with a certain application in mind there is
often a set of required or desired properties given by the application and choosing the best model
is a matter of seeing which model matches the requirements the best. In many cases this process is
not straightforward and often there is not one model that is better than the other candidate models
in all aspects, a common example is the trade-off between accuracy and complexity of the model.
It is often easy to improve the model by increasing its complexity (either by introducing more gen-
eral and flexible mathematical concepts that are more difficult to analyse or less well understood or
by extending the model in a way that increases the cost of computations and simulations using the
model), but finding the best compromise between accuracy and complexity can be difficult. In this
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section we will discuss how to compare models primarily with respect to accuracy and the number
of required parameters.

Regression is similar to interpolation except that the presence of noise in the data is taken into
consideration [83, 178, 274, 280, 387, 414, 416, 419, 454, 460]. The typical regression problem
assumes that the data points { f (xi,yi); i = 1, . . . ,n} are sample from a stochastic variable of the
form

Yi = f (βββ ;xi)+ εi

where f (βββ ;x) is a given function with a fixed number of undetermined parameters βββ ∈B and εi

for i = 1, . . . ,n are samples of a random variable with expected value zero, called the errors or the
noise for the data set.

There are many different classes of regression problems and they are defined by the type of
function f (β1, . . . , βm;x) and the distribution of errors.

Here we will only consider the situation when the εi variables are independent and normally
distributed with identical variance and that the parameter space B is a compact subset of Rk and
that for all xi the function f (βββ ;xi) is a continuous function of βββ ∈B.

Suppose we want to choose the appropriate set of parameters for f based on some set of ob-
served data points. A common approach to this is so called maximum likelihood estimation.

Definition 1.4.8. The likelihood function, L is the function that gives us the probability that a
certain observation, x, of a stochastic variable X is made given a certain set of parameters, βββ ,

Lx(βββ ) = P(X = x|βββ ).

Thus choosing parameters that maximize the likelihood function gives the set of parameters
that seem to be most likely based on available information. Typically these parameters cannot
be calculated exactly and must be estimated, this estimation is called the Maximum Likelihood
Estimation (MLE).

To find the MLE we need to find the maximum of the likelihood function. Note that here we
will only consider the case where the noise variables, εi, are independent and normally distributed
with mean zero.

Lemma 1.4.10. For the stochastic variables Yi = f (βββ ;xi)+ εi where f (βββ ;x) is a given function
with a fixed number of undetermined parameters and εi for i = 1, . . . ,n are independent random
variables with expected value zero βββ ∈B and standard deviation σ the likelihood function is given
by the joint probability density function for the noise,

Ly(βββ ) = (2π)
n
2 σ

n
n

∏
i=1

exp

(
−(yi− f (βββ ;xi))

2

σ2

)

Proof. Since each εi is normally distributed with mean zero and standard deviation σ the difference
between the observed value and the given function, yi− f (βββ ;xi) is normally distributed with mean

85

Applications and Occurrences of the Vandermonde Matrix and its Determinant

section we will discuss how to compare models primarily with respect to accuracy and the number
of required parameters.

Regression is similar to interpolation except that the presence of noise in the data is taken into
consideration [83, 178, 274, 280, 387, 414, 416, 419, 454, 460]. The typical regression problem
assumes that the data points { f (xi,yi); i = 1, . . . ,n} are sample from a stochastic variable of the
form

Yi = f (βββ ;xi)+ εi

where f (βββ ;x) is a given function with a fixed number of undetermined parameters βββ ∈B and εi

for i = 1, . . . ,n are samples of a random variable with expected value zero, called the errors or the
noise for the data set.

There are many different classes of regression problems and they are defined by the type of
function f (β1, . . . , βm;x) and the distribution of errors.

Here we will only consider the situation when the εi variables are independent and normally
distributed with identical variance and that the parameter space B is a compact subset of Rk and
that for all xi the function f (βββ ;xi) is a continuous function of βββ ∈B.

Suppose we want to choose the appropriate set of parameters for f based on some set of ob-
served data points. A common approach to this is so called maximum likelihood estimation.

Definition 1.4.8. The likelihood function, L is the function that gives us the probability that a
certain observation, x, of a stochastic variable X is made given a certain set of parameters, βββ ,

Lx(βββ ) = P(X = x|βββ ).

Thus choosing parameters that maximize the likelihood function gives the set of parameters
that seem to be most likely based on available information. Typically these parameters cannot
be calculated exactly and must be estimated, this estimation is called the Maximum Likelihood
Estimation (MLE).

To find the MLE we need to find the maximum of the likelihood function. Note that here we
will only consider the case where the noise variables, εi, are independent and normally distributed
with mean zero.

Lemma 1.4.10. For the stochastic variables Yi = f (βββ ;xi)+ εi where f (βββ ;x) is a given function
with a fixed number of undetermined parameters and εi for i = 1, . . . ,n are independent random
variables with expected value zero βββ ∈B and standard deviation σ the likelihood function is given
by the joint probability density function for the noise,

Ly(βββ ) = (2π)
n
2 σ

n
n

∏
i=1

exp

(
−(yi− f (βββ ;xi))

2

σ2

)

Proof. Since each εi is normally distributed with mean zero and standard deviation σ the difference
between the observed value and the given function, yi− f (βββ ;xi) is normally distributed with mean

85

85



Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

zero and standard deviation σ . Since all the errors are independent the joint probability density
function is just the product of n probability density functions of the form

pi(βββ ;(xi,yi)) =
1√

2πσ
exp

(
−(yi− f (βββ ;xi))

2

σ2

)
for i = 1, . . . ,n.

For the MLE we only care about what parameters give the maximum of the likelihood function,
not the actual value of the likelihood function so we can ignore the constant factor and in practice it
also often simple to consider the maximum of the logarithm of the likelihood function. This leads
to the following lemma.

Lemma 1.4.11. Let the set of data points {(xi,yi), i = 1, . . . ,n} describe a regression problem and
the stochastic variables Yi = f (βββ ;xi)+ εi where f (βββ ;x) is a given function with a fixed number
of undetermined parameters βββ ∈B and εi for i = 1, . . . ,n are independent normally distributed
random variables with expected value zero and standard deviation σ . The MLE for the parameters
βββ will minimize the sum of the squares of the residuals,

S(βββ ) =
n

∑
i=1

(yi− f (βββ ;xi))
2 .

Proof. Since the natural logarithm is a monotonically increasing function − ln(Ly(βββ )) will have a
minimum point where Ly(βββ ) has a maximum point. By Lemma 1.4.10 we obtain

− ln(Ly(βββ )) =− ln

(
(2π)

n
2 σ

n
n

∏
i=1

exp

(
−(yi− f (βββ ;xi))

2

σ2

))

− ln
(
(2π)

n
2 σ

n
)
+

1
σ2

n

∑
i=1

(yi− f (βββ ;xi))
2

− ln
(
(2π)

n
2 σ

n
)
+

1
σ2 S(βββ ).

Since the first term and the factor in front of S(βββ ) does not depend on βββ the minimum point of
S(βββ ) will coincide with the maximum of the likelihood function.

Here, it can be seen that finding the MLE is equivalent to using the curve fitting technique
describes in Section 1.4.4.

1.4.6 D-Optimal Experimental Design
For the class of linear non-weighted regression problems described in the previous Section, mini-
mizing the square of the sum of residuals gives the maximum likelihood estimation of the parame-
ters that specify the fitted function. This estimation naturally has a variance as well and minimizing
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this variance can be interpreted as improving the reliability of the fitted function by minimizing its
sensitivity to noise in measurements. This minimization is usually done by choosing where to
sample the data carefully, in other words, given the regression problem defined by

yi = f (βββ ;xi)+ εi

for i = 1, . . . ,n with the same conditions on f (βββ ;x) and εi as in the previous Section. We want
to choose a design {xi i = 1, . . . ,n} that minimizes the variance of the values predicted by the
regression model. This is usually referred to as G-optimality.

To give a proper definition of G-optimality we will need the concept of the Fisher information
matrix. When motivating the expression for the Akaike Information Criteria, (AIC), described in
detail in [4, 5, 62, 70, 118, 131, 176, 280, 305, 308, 419] the matrix[

∂ 2

∂βi∂β j
ln
(

g(β̂ββ ;X)
)]n,n

i=1, j=1

In that context we were interested how much information was lost when the model g was used
instead of the data. If the model g is the true distribution, twice differentiable, and has only one
parameter, βββ , it is possible to describe how information about the model that is contained in the
parameter using the Fisher information

I(βββ ) =−EX

[
∂ 2 log(g(βββ ;X))

∂βββ 2

]
.

Essentially this expression measures the probability of a particular outcome being observed for a
known value of βββ , so if the Fischer information is only large in near a certain points it is easy to
tell which parameter value is the true parameter value and if the Fisher information does not have
a clear pea it is difficult to estimate the correct value of βββ . When the model has several parameters
the Fisher information is replaced by the Fischer information matrix.

Definition 1.4.9. For a finite design x ∈X ⊆ Rn the Fisher information matrix , M, is the matrix
defined by

M(βββ ) =−EX

[
∂ 2

∂βi∂β j
ln
(

g(β̂ββ ;X)
)]n,n

i=1, j=1

Thus, the concept of information in the AIC and the concept of information here are two
different but related concepts, for a detailed discussion of this relation see [70].

There is a lot of literature on the Fisher information matrix and but in the context of the least
squares problems discussed here we have a fairly simple expression for its elements, see [328] for
details.

Lemma 1.4.12. For a finite design x ∈X ⊆Rn the Fisher information matrix for the type of least
squares fitting problem considered in this section can be computed by

M(x) =
n

∑
i=1

f(xi)f(xi)
>
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where f(xi) =
[

f1(x) f2(x) . . . fn(x)
]>.

Definition 1.4.10. The G-optimality criterion: A design, ξξξ = {x1, . . . ,xn}, is said to be G-optimal
if it minimizes the maximum variance of any predicted value

Var
(
y(ξξξ )

)
= min

xi,i=1,...,n
max
x∈X

Var
(
y(x)

)
= min

z∈X
max
x∈X

f(x)>M(z)f(x).

The G-optimality condition was first introduced in [432] (the name G- optimality comes from
later work by Kiefer and Wolfowitz where they describe several different types of optimal design
using alphabetical letters [269, 270]) and is an example of a minimax criterion, since it minimizes
the maximum variance of the values given by the regression model [328].

There are many kinds of optimality conditions related to G-optimality. One which is suitable
for us to consider is D-optimality. This type of optimality was first introduced in [481] and instead
of focusing on the variance of the predicted values of the model it instead minimizes the volume of
the confidence ellipsoid for the parameters (for a given confidence level).

Definition 1.4.11. The D-optimality criterion: A design ξξξ is said to be D-optimal if it maximizes
the determinant of the Fisher information matrix

det
(
M(ξξξ )

)
= max

x∈X
det
(
M(x)

)
.

The D-optimal designs are often good design with respect to other types of criterion, see for
example [206, 207] for a brief discussion on this and is often practical to consider due to being
invariant with respect to linear transformations of the design matrix. A well-known theorem called
the Kiefer–Wolfowitz equivalence theorem shows that under certain conditions G-optimality is
equivalent to D-optimality.

Theorem 1.4.13. Kiefer–Wolfowitz equivalence theorem For any linear regression model with
independent, uncorrelated errors and continuous and linearly independent basis functions fi(x)
defined on a fixed compact topological space X there exists a D-optimal design and any D-optimal
design is also G-optimal.

This equivalence theorem was originally proven in [268] but the formulation above is taken
from [328]. Thus maximizing the determinant of the Fisher information matrix corresponds to
minimizing the variance of the estimated βββ . Interpolation can be considered a special case of
regression when the sum of the square of the residuals can be reduced to zero. Thus we can speak
of D-optimal design for interpolation as well, in fact optimal experiment design is often used to
find the minimum number of points needed for a certain model. For a linear interpolation problem
defined by the alternant matrix A(f,x) the Fisher information matrix is M(x) = A(f;x)>A(f;x) and
since A(f;x) is an n×n matrix det

(
A(f;x)>

)
det(A(f;x)) = det

(
(f;x)

)
. Thus the maximization of

the determinant of the Fisher information matrix is equivalent to finding the extreme points of the
determinant of an alternant matrix in some volume given by the set of possible designs.
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A standard case of this is polynomial interpolation where the x-values are in a limited interval,
for instance −1 ≤ xi ≤ 1 for i = 1,2, . . . ,n. In this case the regression problem can be written as
Vn(x)>βββ = y where Vn(x) is a Vandermonde matrix as defined in equation 1.6 and the constraints
on the elements of βββ means that the volume we want to optimize over is a cube in n dimensions.
There is a number of classical results that describe how to find the D-optimal designs for weighted
univariate polynomials with various efficiency functions, for example see [158], and [305] where
they demonstrate one way to optimize the Vandermonde determinant over a cube.

The shape of the volume to optimize the determinant in is given by constraints on the data
points. For example, if there is a cost associated with each data point that increases quadratically
with x and there is a total budget, C, for the experiment that cannot be exceeded the constraint on
the x-values becomes x2

1 + x2
2 + . . .+ x2

n ≤ C and the determinant needs to be optimized in a ball.
In Chapter 2 we examine the optimization of the Vandermonde determinant over several different
surfaces in several dimensions.

The D-optimal design is mainly used to improve the stability of an interpolation problem as an
alternative to the non-linear fitting. It should be noted that while choosing a D-optimal design can
give an approximation method that is more stable since it minimizes the variance of the parameters,
the approximating function can still be highly sensitive to changes in parameters (the variance of
the predicted values can be minimized but still high) so it does necessarily maximize stability or
stop instability phenomenons similar to Runge’s phenomenon for polynomial interpolation [305].

1.5 Random Matrix Theory
In this section we give an overview of the random matrix theory (RMT) and some applications.
Considering the close relationship between the Vandermonde determinant and determinantal prob-
ability distribution, then it is important that we give a brief overview of RMT in connection to
Gaussian ensembles and Wishart ensembles.

In probability theory and mathematical physics, a random matrix is a matrix-valued random
variable, that is, a matrix in which some or all elements are random variables. Many important
properties of physical systems can be represented mathematically as matrix problems. For example,
the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-
particle interactions within the lattice.

We take advantage of this fact of Vandermonde determinant to establish the relationship be-
tween the product of Vandermonde matrices and joint eigenvalue probability density functions for
large random matrices that occur in various areas of both classical mechanics, mathematics, statis-
tics and many other areas of science. We also illustrate the optimization of these densities based of
the extreme points of Vandermonde determinant.

The extreme points of the Vandermonde determinant appears in random matrix theory, for ex-
ample to compute the limiting value of the so called Stieltjes transform using the method sometimes
called the ’Coulomb gas analogy’ [327]. This is also closely related to many problems in quantum
mechanics and statistical mechanics. For an overview of some other applications of the extreme
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the extreme points of Vandermonde determinant.

The extreme points of the Vandermonde determinant appears in random matrix theory, for ex-
ample to compute the limiting value of the so called Stieltjes transform using the method sometimes
called the ’Coulomb gas analogy’ [327]. This is also closely related to many problems in quantum
mechanics and statistical mechanics. For an overview of some other applications of the extreme
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points see [348].
In the next section we give a brief overview of random matrix theory (RMT).

1.5.1 Overview of Random Matrix Theory
Random matrices were first introduced in mathematical statistics in the late 1920s [496] and today
the joint probability density function of eigenvalues of random matrices play a significant role
both in probability theory, mathematical physics and quantum mechanics [199]. A random matrix,
in simple terms can be defined as any matrix whose real or complex valued entries are random
variables.

Random matrix theory primarily discusses the properties large or complex matrices with ran-
dom variables as entries by utilizing the existing probability laws, in particularly, Gaussian distri-
butions [8, 9]. The main motivational question in the probabilistic approach to random matrices
is: what can be said about the probabilities of a few or if not all of its eigenvalues and eigenvec-
tors? This question is significant in many areas of science including particle physics, mathematics,
statistics and finance as highlighted here under.

In nuclear physics random matrices were applied in the modelling of the nuclei of heavy atoms
[317, 256, 374, 375, 493]. The main idea was to investigate the spacing between the lines in the
electromagnetic spectrum of a heavy atom nucleus, for example. Uranium 238, which resembles
the separation between the eigenvalues of a random matrix [208, 327]. These random matrices
have also been employed in solid-state physics to model the chaotic behaviour of large disordered
Hamiltonians in terms of mean field approximation [116]. Random matrices have also been applied
in quantum chaos to characterise the spectral statistics of quantum systems [49, 95].

Random unitary matrix transformations has also appears in theoretical physics, for example,
the boson sampling model [1] has been applied in quantum optics to describe the advantages of
quantum computation over classical computation. Random unitary transformations can also be di-
rectly implemented in an optical circuit, by mapping their parameters to optical circuit components
[405].

Other applications in theoretical physics include, analysing the chiral Dirac operator [266, 473]
quantum chromodynamics, quantum gravity in two dimensions [170], in mesoscopic physics ran-
dom matrices are used to characterise materials of intermediate length [413], spin-transfer torque
[407], the fractional quantum Hall effect [71], Anderson localization [254], quantum dots [511]
and superconductors [18], electrodynamic properties of structural materials [509], describing elec-
trical conduction properties of disordered organic and inorganic materials [507], quantum gravity
[121] and string theory [47].

In mathematics some application include the distribution of the zeros of the Riemann zeta
function [265], enumeration of permutations having certain particularities in which the random
matrices can help to derive polynomials permutation patterns [367], counting of certain knots and
links as applies to folding and colouring [47].

In multivariate statistics random matrices were introduced for statistical analysis of large sam-
ples in estimation of covariance matrices [138, 142, 143, 320, 444, 496]. More significant results
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have proven that to extend the classical scalar inequalities for improved analysis of a structured
dimension reduction based on largest eigenvalues of finite sums of random Hermitian matrices
[461].

Random matrices have also been applied to financial modelling especially risk models and time
series [19, 218, 471, 496] since their discovery by Wishart in 1928.

Random matrices also are increasingly used to model the network of synaptic connections
between neurons in the brain as applies to neural networks or neuroscience. Neuronal networks
can help to construct dynamical models based on random connectivity matrix [435]. This has
also helped to establish the link relating the statistical properties of the spectrum of biologically
inspired random matrix models to the dynamical behaviour of randomly connected neural networks
[180, 260, 351, 459, 480].

In optimal control theory random matrices appear as coefficients in the state equation of linear
evolution. In most problems the values of the parameters in these matrices are not known with
certainty, in which case there are random matrices in the state equation and the problem is known
as one of stochastic control [86, 464, 465].

1.5.2 Univariate and Multivariate Normal Distribution

Definition 1.5.1. The univariate normal probability density function (Gaussian normal density)
for a random variable X, which is the basis for construction of many multivariate distributions that
occur in statistics, can be expressed as [8]:

PX(x) = k · exp
{
−1

2
α(x−β )2

}
≡ k · exp

{
−1

2
(x−β )α(x−β )

}
(1.137)

where α and k is chosen so that the integral of (1.137) over the entire x−axis is unity and β is
equal to the expectation of X, that is, E[X ] = β . It is then said that X follows a normal probability
density function with parameters α and β , also expressed as X ∼N (α,β ).

The density function of the multivariate normal distribution of random variables say X1, · · · , Xp

is defined analogously. If the scalar variable x in (1.137) is replaced by the vector X=(X1, · · · , Xp)
>,

the scalar constant β is replaced by a vector b = (b1, · · · , bp)
> and the expression

α(x−β )2 = (x−β )α(x−β )

is replaced by the quadratic form

(X−b)>A(X−b) =
p

∑
i, j=1

ai j(xi−bi)(x j−b j). (1.138)
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where A is the positive definite matrix

A =


a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
. . .

...
ap1 ap2 · · · app

 , (1.139)

then the density of the p-variate normal distribution becomes

P(X) = K · exp
{

1
2
(X−b)>A(X−b)

}
(1.140)

where > denotes transpose and K > 0 is chosen so that the integral over the entire p-dimensional
Euclidean space x1, · · · ,xp is unity.

Theorem 1.5.1. If the density of a p-dimensional random vector X is√
|A|(2π)−

1
2 p exp

{
−1

2
(X−b)>A(X−b)

}
,

then the expected value of X is b and the covariance matrix is A−1, for details see [8]. Conversely,
given a vector µµµ and a positive definite matrix ΣΣΣ, there is a multivariate normal density

P(X) = (2π)−
1
2 p|ΣΣΣ|−

1
2 exp

{
(X−µµµ)>ΣΣΣ

−1(X−µµµ)
}

(1.141)

such that the expected value of the density is µ and the covariance matrix is ΣΣΣ.

The density (1.141) is often denoted as X∼Np(µµµ,ΣΣΣ).
For example, the diagonal elements of the covariance matrix, ΣΣΣii, is the variance of the ith

component of X, which may sometimes be denoted by σ
2
i . The correlation between Xi and X j is

defined as
ρi j =

σi j√
σii
√

σ j j
=

σi j

σiσ j

where σk denotes the standard deviation of Xk and σi j = ΣΣΣi j. This measure of association is sym-
metric in Xi and X j such that ρi j = ρ ji. Since(

σii σi j

σ ji σ j j

)
=

(
σ2

i σiσ jρi j

σiσ jρi j σ2
j

)
is positive-definite, the determinant∣∣∣∣ σ2

i σiσ jρi j

σiσ jρi j σ2
j

∣∣∣∣= σ
1
i σ

2
j (1−ρ

2
i j)

is positive. Therefore −1 < ρi j < 1.
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1.5.3 Wishart Distribution
The matrix distribution that is now known as a Wishart distribution, was first derived by Wishart in
the late 1920s [496]. It is usually regarded as a multivariate extension of the χ2−distribution.

Theorem 1.5.2. The sum of squares, χχχ
2 = Z2

1 + · · ·+Z2
n of n- independent standard normal vari-

ables Zi of mean 0 and variance 1, that is, distributed as N (0,1) has a χ2-distribution defined
by:

P
χ2χ2
χ2(x) =

1

2
1
2 nΓ
(1

2 n
)e−

1
2 x2

(χχχ2)
1
2 n−1. (1.142)

where Γ(·) is the Gamma function [378].

Definition 1.5.2. Let X = (X1, · · · ,Xn), where Xi ∼N (µi,ΣΣΣ) and Xi is independent of X j, where
i 6= j. The matrix W : p× p is said to be Wishart distributed [496] if and only if W = XX> for
some matrix X in a family of Gaussian matrices Gm×n,m ≤ n, that is, X ∼ Nm,n(µµµ,ΣΣΣ,I) where
ΣΣΣ ≥ 0. If µµµ = 0 we have a central Wishart distribution which will be denoted by W ∼ Wm(ΣΣΣ,n),
and if µµµ 6= 0 we have a non-central Wishart distribution which will be denoted W∼Wm(ΣΣΣ,n,444),
where444= µµµµµµ

> and n is the number of degrees of freedom.

In our study, we shall mainly focus on the central Wishart distribution for which µµµ = 0 and
X∼Nm,n(µµµ,ΣΣΣ,I).

Theorem 1.5.3 ([8]). Given a random matrix W which can be expressed as W = XX> where
X1, · · · ,Xn, (n ≥ p) are independent, each with the distribution Np(µµµ,ΣΣΣ). Then, the distribution
of W∼Wp(ΣΣΣ,n). If ΣΣΣ > 0, then the random matrix W has a joint density functions:

P(W) =


1

2
np
2 Γp

(n
2

) |W| n−p−1
2 exp

(
−1

2
Tr
(
ΣΣΣ
−1W

))
, if W > 0

0, otherwise.
(1.143)

where the multivariate Gamma function is given by

Γp (n/2) = π
p(n−1)

2

p

∏
i=1

Γ

(
1
2
(n+1− i)

)
. (1.144)

If p = 1,µµµ = 0 and ΣΣΣ = 1, then the Wishart matrix is identical to a central χχχ
2-variable with n

degrees of freedom as defined in (1.142).

Theorem 1.5.4 ([253, 372]). If X is distributed as N (µµµ,ΣΣΣ), then the probability density distribu-
tion of the eigenvalues of XX>, denoted λλλ = (λ1, . . . ,λm), is given by:

P(λλλ ) =
π−

1
2 n det(ΣΣΣ)−

1
2 n det(D)

1
2 (n−p−1)

2
1
2 npΓp

(1
2 n
)
Γp
(1

2 p
) ∏

i< j
(λi−λ j)exp

(
−1

2
Tr
(
ΣΣΣ
−1D

))
(1.145)

where D = diag(λi).

93

Random Matrix Theory

1.5.3 Wishart Distribution
The matrix distribution that is now known as a Wishart distribution, was first derived by Wishart in
the late 1920s [496]. It is usually regarded as a multivariate extension of the χ2−distribution.

Theorem 1.5.2. The sum of squares, χχχ
2 = Z2

1 + · · ·+Z2
n of n- independent standard normal vari-

ables Zi of mean 0 and variance 1, that is, distributed as N (0,1) has a χ2-distribution defined
by:

P
χ2χ2
χ2(x) =

1

2
1
2 nΓ
(1

2 n
)e−

1
2 x2

(χχχ2)
1
2 n−1. (1.142)

where Γ(·) is the Gamma function [378].

Definition 1.5.2. Let X = (X1, · · · ,Xn), where Xi ∼N (µi,ΣΣΣ) and Xi is independent of X j, where
i 6= j. The matrix W : p× p is said to be Wishart distributed [496] if and only if W = XX> for
some matrix X in a family of Gaussian matrices Gm×n,m ≤ n, that is, X ∼ Nm,n(µµµ,ΣΣΣ,I) where
ΣΣΣ ≥ 0. If µµµ = 0 we have a central Wishart distribution which will be denoted by W ∼ Wm(ΣΣΣ,n),
and if µµµ 6= 0 we have a non-central Wishart distribution which will be denoted W∼Wm(ΣΣΣ,n,444),
where444= µµµµµµ

> and n is the number of degrees of freedom.

In our study, we shall mainly focus on the central Wishart distribution for which µµµ = 0 and
X∼Nm,n(µµµ,ΣΣΣ,I).

Theorem 1.5.3 ([8]). Given a random matrix W which can be expressed as W = XX> where
X1, · · · ,Xn, (n ≥ p) are independent, each with the distribution Np(µµµ,ΣΣΣ). Then, the distribution
of W∼Wp(ΣΣΣ,n). If ΣΣΣ > 0, then the random matrix W has a joint density functions:

P(W) =


1

2
np
2 Γp

(n
2

) |W| n−p−1
2 exp

(
−1

2
Tr
(
ΣΣΣ
−1W

))
, if W > 0

0, otherwise.
(1.143)

where the multivariate Gamma function is given by

Γp (n/2) = π
p(n−1)

2

p

∏
i=1

Γ

(
1
2
(n+1− i)

)
. (1.144)

If p = 1,µµµ = 0 and ΣΣΣ = 1, then the Wishart matrix is identical to a central χχχ
2-variable with n

degrees of freedom as defined in (1.142).

Theorem 1.5.4 ([253, 372]). If X is distributed as N (µµµ,ΣΣΣ), then the probability density distribu-
tion of the eigenvalues of XX>, denoted λλλ = (λ1, . . . ,λm), is given by:

P(λλλ ) =
π−

1
2 n det(ΣΣΣ)−

1
2 n det(D)

1
2 (n−p−1)

2
1
2 npΓp

(1
2 n
)
Γp
(1

2 p
) ∏

i< j
(λi−λ j)exp

(
−1

2
Tr
(
ΣΣΣ
−1D

))
(1.145)

where D = diag(λi).

93

93



Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

It will prove useful that (1.145) contains the term ∏
i< j

(λi−λ j) which is the determinant of a

Vandermonde matrix [454]. A Vandermonde matrix is a well-known type of matrix that appears
in many different applications both in mathematics, physics and recently in multivariate statistics,
most famously curve-fitting using polynomials, for details see [454].

In the next section, we will discuss some well-known ensembles that that appear in the mathe-
matical study of random matrices.

1.5.4 Classical Random Matrix Ensembles
The Gaussian ensembles of random matrices have been extensively investigated and dates back to
the works in statistical distribution of the widths and spacings of nuclear resonance levels [494]
and statistical theory of energy levels of complex systems [135]. Thus random matrix theory
as thoroughly discussed in [167, 281, 327] has proved to be pivotal in high dimensional and/or
multivariate statistical analysis plus many other applications based Wishart matrix [8] as well as
orthogonal polynomials [454]. Therefore, we attempt to investigate the properties of the extreme
points of the joint eigenvalue probability density function of the random Wishart matrix optimized
over the unit p-sphere [348, 349]. We also apply the techniques of Vandermonde polynomial opti-
mization [308], matrix factorisation [371] and eigenvalue optimization [204], matrix norms [114]
and condition number [140].

The key famously known classical ensembles include the Gaussian Orthogonal Ensembles
(G.O.E), the Gaussian Unitary Ensembles (G.U.E), the Gaussian Symplectic Ensembles (G.S.E),
the Wishart Ensembles (W.E), the MANOVA Ensembles (M.E) and the Circular Ensembles (C.E).
These can be derived from the multivariate Gaussian matrix, Gβ ,β = 1,2,4. Since, the multivariate
Gaussian possesses an inherent orthogonal property from the standard normal distribution, that
is, they remain invariant under orthogonal transformations. More detailed discussions on these
ensembles can be found in [8, 11, 327, 357, 492, 496].

Definition 1.5.3 ([281]). The Gaussian Orthogonal Ensembles (G.O.E) are characterised by the
symmetric matrix X = G1(N,N) obtained as

(
X+X>

)
/2. The diagonal entries of X are inde-

pendent and identically distributes (i.i.d) with a standard normal distribution N (0,1) while the
off-diagonal entries are i.i.d with a standard normal distribution N1(0,1/2). That is, a random
matrix X is called the Gaussian Orthogonal Ensemble (GOE), if it is symmetric and real-valued
(Xi j = X ji) and has

X−i j =

{√
2ξii ∼N1(0,1), if i = j

ξi j ∼N1(0,1/2), i < j.
(1.146)

Definition 1.5.4 ([129, 281]). The Gaussian Unitary Ensembles (G.U.E), are characterised by
the Hermitian complex-valued matrix H = G2(N,N) obtained as

(
H+H>

∗
)
/2 where >∗ is the

Hermitian transpose, that is, the Hermitian or conjugate transpose of H, that can be expressed as
(H>

∗
)i j = H ji. The diagonal entries of H are independent and identically distributes (i.i.d) with
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and condition number [140].

The key famously known classical ensembles include the Gaussian Orthogonal Ensembles
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the Wishart Ensembles (W.E), the MANOVA Ensembles (M.E) and the Circular Ensembles (C.E).
These can be derived from the multivariate Gaussian matrix, Gβ ,β = 1,2,4. Since, the multivariate
Gaussian possesses an inherent orthogonal property from the standard normal distribution, that
is, they remain invariant under orthogonal transformations. More detailed discussions on these
ensembles can be found in [8, 11, 327, 357, 492, 496].

Definition 1.5.3 ([281]). The Gaussian Orthogonal Ensembles (G.O.E) are characterised by the
symmetric matrix X = G1(N,N) obtained as

(
X+X>

)
/2. The diagonal entries of X are inde-

pendent and identically distributes (i.i.d) with a standard normal distribution N (0,1) while the
off-diagonal entries are i.i.d with a standard normal distribution N1(0,1/2). That is, a random
matrix X is called the Gaussian Orthogonal Ensemble (GOE), if it is symmetric and real-valued
(Xi j = X ji) and has

X−i j =

{√
2ξii ∼N1(0,1), if i = j

ξi j ∼N1(0,1/2), i < j.
(1.146)

Definition 1.5.4 ([129, 281]). The Gaussian Unitary Ensembles (G.U.E), are characterised by
the Hermitian complex-valued matrix H = G2(N,N) obtained as

(
H+H>

∗
)
/2 where >∗ is the

Hermitian transpose, that is, the Hermitian or conjugate transpose of H, that can be expressed as
(H>

∗
)i j = H ji. The diagonal entries of H are independent and identically distributes (i.i.d) with
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a standard normal distribution N (0,1) while the off-diagonal entries are i.i.d with a standard
normal distribution N2(0,1/2). That is, random matrix H is called a Gaussian Unitary Ensemble
(GUE), if it is complex-valued, Hermitian (H>

∗
i j = H ji), and the entries satisfy

Hi j =

{√
2ξii ∼N2(0,1), if i = j

1√
2
(ξi j +

√
−1ηi j)∼N2(0,1/2), i < j.

(1.147)

Definition 1.5.5 ([19, 281]). The Gaussian Symplectic Ensembles (G.S.E), are characterised by
the self-dual matrix S = G4(N,N) obtained as

(
S+S>

∗
)
/2 where (·)>∗ represents the conjugate

transpose of a quaternion matrix. The diagonal entries H are independent and identically dis-
tributes (i.i.d) with a standard normal distribution N (0,1) while the off-diagonal entries are i.i.d
with a standard normal distribution N4(0,1/2).

Definition 1.5.6. [19, 281] The Wishart Ensembles (W.E), Wβ (m,n),m ≥ n, are characterised by
the symmetric, Hermitian or self-dual matrix W = Wβ (N,N) obtained as W = AA>,W = HH>,
or W = SS> where (·)> represents the usual transposes of defined in G.O.E, G.U.E and G.S.E
above respectively.

Definition 1.5.7 ([19, 281]). The MANOVA Ensembles (M.E), Jβ (m1,m2,n),m1,m2 ≥ n, are char-
acterised by the symmetric, Hermitian or self-dual matrix A/(A+B) where A and B are Wβ (m1,n)
and Wβ (m2,n) respectively.

Definition 1.5.8 ([129, 281]). The Circular Ensembles (C.E), are characterised by the special
matrix UU> where Uβ ,β = 1,2 is a uniformly distributed unitary matrix.

Lemma 1.5.5 ([281]). From the Gaussian normal distribution with mean µ and variance σ
2, that

is, X ∼N (µ,σ2), given by (1.137) and the multivariate normal distribution with mean vector µ

and the covariance matrix is ΣΣΣ, NN(µµµ,ΣΣΣ) given in (1.141), then it can be verified that the joint
density of A is written as:

PX(A) =
1

2n/2

1
πn(n+1)/4 exp

(
−‖A‖2

F/2
)

where ‖ · ‖F represents the Frobenius norm of a matrix.

Definition 1.5.9. The Frobenius norm is in principle an extension of the usual Euclidean norm for
vectors:

‖A‖F =

√
m

∑
i=1

n

∑
j=1
|ai j|2 =

√
tr(A∗A)

where tr is the matrix track and A∗ denotes the hermite conjugate of A.

Theorem 1.5.6 ([8, 129]). If we let X be an N ×N random matrix with entries that are inde-
pendently identically distributed as N (0,1), then the joint density distribution of the Gaussian
ensembles is given by:
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Orthogonal β = 1

Gaussian: Unitary β = 2 Pβ (A) =
1

2n/2

1
πn(n+1) β/4 exp

(
−1

2
‖A‖2

F

)
.

Symplectic β = 4

Theorem 1.5.7 ([129, 327]). Considering a Wishart matrix Wβ (m,n) =XX> where X=Gβ (m,n)
is a multivariate Gaussian matrix. Then, the joint elements of Wβ (m,n) can be computed in two
steps, first writing W = QR and then integrating out Q leaving R. Secondly applying the transfor-
mation W = RR>, which is the famous Cholesky factorization of matrices in numerical analysis.
Then the joint density distribution for Wishart ensembles of W is given by:

Orthogonal β = 1

Wishart: Unitary β = 2 Pβ (W ) =
exp
(
−tr(W/2)

)(
detW

)β (m−n+1)/2−1

2mnβ/2Γ
β
n (mβ/2)

.

Symplectic β = 4

Here we notice that the density distribution for both the Gaussian and Wishart ensembles are
made up of determinant term and exponential trace term. This generalizes the fact that indeed
the determinant term is actually the Vandermonde determinant in (1.8) for the case of the joint
eigenvalue density functions. This concept further explained in the next section.

1.5.5 Gaussian ensembles

The most studied random matrix ensembles are the Gaussian ensembles. For example, taking
an N×N matrix whose entries are independently sampled from the Gaussian probability density
function with mean 0 and variance 1. For N = 6 we may generate the following non-symmetric
matrix

X =



1.2448 0.0561 −0.8778 1.1058 1.1759 0.7339
−0.1854 0.7819 −1.3124 0.8786 0.3965 −0.3138
−0.4925 −0.6234 0.0307 0.8448 −0.2629 0.7013
0.1933 −1.5660 2.3387 0.4320 −0.0535 0.2294
−1.0143 −0.7578 0.3923 0.3935 −0.4883 −2.7609
1.8839 0.4546 −0.4495 0.0972 −2.6562 1.3405


whose entries are positive, some negative, and all not far from zero. Since the matrix X is non-
symmetric, that is, Xi j 6= X ji, then X has complex eigenvalues. To obtain real distinct eigenvalues,
we symmetrize X so that into real Hermitian form so that

H =
(
X+X>

)
/2 (1.148)
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where (·)> denotes the transpose of the defined matrix. It follows that the symmetric sample matrix
becomes

H =



1.2448 −0.0646 −0.6852 0.6496 0.0807 −0.5750
−0.0646 0.7819 −0.9679 −0.3436 −0.1806 0.0704
−0.6852 −0.9679 0.0307 1.5917 0.0647 0.1258
0.6496 −0.3436 1.5917 0.4320 0.1700 0.1633
0.0807 −0.1806 0.0647 0.1700 −0.4883 −2.7085
−0.5750 0.0704 0.1258 0.1633 −2.7085 1.3405

 (1.149)

whose eigenvalues are given as

λ = {−2.4932,−1.7534,0.3307,1.4459,2.3823,3.4294}.

The Gaussian density distribution of such values for different samples is as shown in Figure 1.2.
Before we define all the cases of ensembles, it is important to first define Gaussian matrices, Her-
mitian matrices and quaternion:

Definition 1.5.10. The real N×N symmetric matrix X = (Xi j) whose entries are such that Xi j are
independent and identically distributed as normal distribution that has mean µ = 0 and variance
σ

2 = 1 is called a Gaussian (random) matrix. The density of the entries Xii on the major diag-

onal has the density f (xi) =
1√
2π

exp
(
−1

2
x2

i

)
and the off-diagonal entries Xi j have the density

f (xi j) =
1√
π

exp
(
−x2

i j
)
.

Definition 1.5.11. The Hermitian matrices is that they have real elements on the major diagonal,
and complex conjugates for off-diagonal entries. The Hermitian matrix is also a self-adjoint matrix,
that is, a complex square matrix that is equal to its own conjugate transpose so that the element in
the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and
i-th column, for all indices i and j. Thus xi j = x ji or H = H>.

Definition 1.5.12. The quaternion self-dual matrices are 2N×2N matrices constructed as

H = [X Y;−conj(Y) conj(X)];

where H is as expressed in (1.148), X and Y are complex matrices, while conj denotes complex
conjugation of entries. The Quaternions are generally a number system that extends the complex
numbers and are represented in the form:

x = a+bi+ c j+dk

where a,b,c, and d are real numbers, and i, j, and k are the fundamental quaternion units. These
can be combined under multiplication as in Table 1.3
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× 1 i j k
1 1 i j k
i i −1 k − j
j j −k −1 i
k k j −i −1

Table 1.3: Quaternion multiplication and equivalently i2 = j2 = k2 = i jk =−1.

The above ideas of random matrices can be extended to an arbitrary number of N of variables.
For a given joint probability density function f (x1, . . . ,xN), the quantity f (x1, . . . ,xN)dx1 . . .dxN is
the probability that one finds the first variable x1 in the interval [x1,x1 + dx1], the second variable
x2 in the interval [x2,x2 + dx2] and so on. The marginal probability density function f (x1) is the
probability that the first variable will be in the interval [x1,x1 +dx1] can be computed as

f (x) =
∫

x2∈R
. . .
∫

xN∈R
f (x2, . . . ,xN)dxN . . .dx2.

If for a given set of random variables that is a function of another one say, xi = xi(t), then there
is a relation between the joint probability density function of the two sets given by

f (x1, . . . ,xN)dx1 . . .dxN = f (x1(t), . . . ,xN(t))| J(x→ t)|︸ ︷︷ ︸
f̂ (t1,...,tN)

dt1 . . .dtN

where J(x→ t) is their Jacobian of transformation given by J(x→ t) = det
(

∂xi

∂ ti

)
and | · | is that

absolute value of the given term.
Now, from the Gaussian random matrix (1.149), the joint probability density function f (H) of

the N2 entries {x11, . . . ,xNN} of the matrix H that are independent Gaussian random variables is
given by:

1. The Gaussian unitary ensemble GUE(n) is described by the Gaussian measure with density

f (H) = f (x11, . . . ,xNN) =
N

∏
i, j=1

[
1√
2π

exp
(
−1

2
x2

i j

)]
=

1
ZGUE(N)

e−
N
2 tr(H2) (1.150)

on the space of N×N Hermitian matrices H = (Hi j)
N
i, j=1. Here ZGUE(N) = 2N/2

π
N2/2 is a

normalization constant, chosen so that the integral of the density is equal to one. The term
unitary refers to the fact that the distribution is invariant under unitary conjugation.

2. The Gaussian orthogonal ensemble GOE(N) is described by the Gaussian measure with
density

f (H) = f (x11, . . . ,xNN) =
N

∏
i, j=1

[
1√
2π

exp
(
−N

4
x2

i j

)]
=

1
ZGUE(N)

e−
N
4 tr(H2) (1.151)
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Figure 1.2: The Gaussian Eigenvalue Densities for GOE, β = 1, GUE β = 2, and GSE
β = 4 for N = 8 and number of samples T = 50000.

on the space of n× n real symmetric matrices H = (Hi j)
n
i, j=1. Its distribution is invariant

under orthogonal conjugation.

3. The Gaussian symplectic ensemble GSE(N) is described by the Gaussian measure with
density

f (H) = f (x11, . . . ,xNN) =
N

∏
i, j=1

[
1√
2π

exp
(
−Nx2

i j
)]

=
1

ZGUE(N)
e−Ntr(H2) (1.152)

on the space of N ×N Hermitian quaternionic matrices, for example, symmetric square
matrices composed of quaternions, H = (Hi j)

N
i, j=1. Its distribution is invariant under con-

jugation by the symplectic group, and it models Hamiltonians with time-reversal symmetry
but no rotational symmetry.

The joint probability density for the eigenvalues λ1,λ2, . . . ,λn of GUE/GOE/GSE is given by

1
Zβ ,N

∏
i< j

∣∣λ j−λi
∣∣β n

∏
k=1

e−
β

4 λ 2
k , (1.153)

where the Dyson index, β = 1 for GOE, β = 2 for GUE, and β = 4 for GSE, counts the number of
real components per matrix element;

Zβ ,N = (2π)N/2
N

∏
j=1

Γ(1+ jβ/2)
(1+β/2)
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is a normalization constant which can be explicitly computed, see [420]. In the case of GUE
(β = 2), the formula (1.153) describes a determinantal point process. Eigenvalues repel as the joint
probability density has a zero (of β th-order) for coinciding eigenvalues λ j = λi.

The Gaussian factor
N

∏
j=1

e−
β

4 λ 2
j = exp

(
−1

2

N

∑
j=1

λ
2
j

)
kills any configuration of eigenvalues {λ}

where λ
′
ja are big, that is, as λ j → ∞ the factor vanishes to zero, thus the eigenvalues do not

stay too far from the origin. On the other hand, the difference-product factor ∏
i< j
|x j−xi | kills the

configuration when two eigenvalues are close to each other, since the factor vanishes to zero, that
is lim

i 6= j
|x j− xi| → 0.

The other effect of the the repulsion factor ∏
i< j
|x j−xi | is that it makes the eigenvalues strictly

and strongly non-independent. In other words, each eigenvalue feels the presence of others, thus
the joint eigenvalue probability density function (1.153) does not factorize at all.

For the distribution of the largest eigenvalue for GOE, GUE and Wishart matrices of finite
dimensions, for details see [85].

1.5.6 Distribution of Level Spacings

Considering a 2× 2 GOE matrix H =

(
x1 x3
x3 x2

)
where x1,x2 ∼N (0,1) and x3 ∼N (0,

1
2
), the

we aim to evaluate the probability density function of the spacing c = λ2− λ1 between the two
eigenvalues λ2 > λ1 also called the Wigner surmise [195]. The two eigenvalues are indeed random
variables expressed in terms of the entries of the roots of the characteristic polynomial

λ
2− tr(H)λ +det(H)

whose zeros are

λ1,2 =
1
2

(
x1 + x2±

√
(x2− x1)2 +4x2

3

)
.

This implies that the spacing between the two roots is given by

s = λ2−λ1 =
√

(x2− x1)2 +4x2
3.

By definition, the density of the spacing of the eigenvalues λ1 and λ2

p(s) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

e−
1
2 x2

1
√

2π

e−
1
2 x2

2
√

2π

e−x2
3

√
π

δ

(
s−
√

(x2− x1)2 +4x2
3

)
dx1dx2dx3. (1.154)

By change of variable such that
x1− x2 = r cos(θ)
2x2 = r sin(θ)
x1 + x2 = φ

⇒


x1 =

1
2(r cos(θ)+φ)

x2 =
1
2(φ − r sin(θ))

x3 =
1
2(r sin(θ))

.
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On computing the corresponding Jacobian we obtain

J = det


∂x1
∂ r

∂x1
∂θ

∂x1
∂φ

∂x2
∂ r

∂x2
∂θ

∂x2
∂φ

∂x3
∂ r

∂x3
∂θ

∂x3
∂φ

= det

 1
2(cos(θ)) −1

2 r(sin(θ)) 1
2

−1
2(cos(θ)) −1

2 r(sin(θ)) 1
2

(sin(θ)) r(sin(θ)) 0

=− r
4
.

It follows that

p(s) =
1

23π
3
2

∫ 2π

0

∫ s

0

∫ ∞

−∞
exp
{
−1

2

[(
r cos(θ)+φ

2

)2

+

(
−r cos(θ)+φ

2

)2

+

(
r sin(θ)+φ√

2

)2]}
ρrdφdrdθ (1.155)

=

√
4π

23π
3
2

∫ 2π

0
exp
{
−1

2

[
s2 cos2(θ)

2
+

s2 sin2(θ)

2

]}
=

1
2

se−
1
4 s2

(1.156)

where the identity cos2
θ + sin2

θ = 1 is used in the simplifications. It can be noticed that the
spacing probability density function in (1.155) is actually normalized in that∫ ∞

0
p(s)ds = 1.

For the ordered sequence of eigenvalues λ1 < .. . < λn < λn+1 < .. ., the spacing probability

density function is often rescaled by defining p̄(s) = E[s]p(E[s]s) where E[s] =
∫ ∞

0
sp(s)ds is the

mean level spacing and upon scaling it follows that
∫ ∞

0
p̄(s)ds =

∫ ∞

0
sp̄(s)ds = 1.

It follows immediately from the rescaled spacing probability density function that from (1.153),
pβ (s) = π

2 se−
π

4 s2
, for GOE β = 1

pβ (s) = 32
π2 s2e−

4
π

s2
, for GUE β = 2

pβ (s) = 218

36π3 s4e−
64
9π

s2
, for GSE β = 4

. (1.157)

The eigenvalue spacing probability density functions (1.157) are as illustrated in Figure 1.3.

1.5.7 The Vandermonde determinant in systems with Coulombian in-
teractions

Several interesting mathematical problems that feature Vandermonde matrices and Vandermonde
determinant can be described as questions about systems with Coulombian interactions. The name
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Figure 1.3: The Gaussian Eigenvalue Spacing Distributions for GOE, β = 1, GUE β = 2,
and GSE β = 4.

Coulombian interaction come from Charles-Augustin Coulomb (1736-1806) who is probably most
well-known for quantifying the force between two charged particles (what is today known as
Coulomb’s law) in 1785 [96]. Coulombs law states that the force between two charged particles is
proportional to the product of the charges and the inverse of the square of the distance between the
two charges.

Taking the logarithm of the expression for the Vandermonde determinant given in (1.79) and
(1.153) gives

log
(
vn(x1, . . . ,xn)

)
= ∑

1≤i< j≤n
log(x j− xi)

and thus −1
2

log
(
vn(x1, . . . ,xn)

)
gives the same as setting g(x) = log(x) and V (x)≡ 0 in

HN(x1, . . . ,xN) =
1
2 ∑

i 6= j
g(xi− x j)+N

N

∑
i=1

V (xi). (1.158)

the Coulombs law which states that the force between two charged particles is proportional to the
product of the charges and the inverse of the square of the distance between the two charges [96].

The points xi usually belong to Rd (or some subset thereof) but there is also research that
involves more general manifolds. A common goal is to minimize this energy or find some other
extreme points. There are many areas where this kind of problems, or closely related problems
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appear. See the extended version of [421] for a recent review of the field. In this section we will
mention a few examples of interesting systems with Coulombian interactions that are connected
to the Vandermonde determinant and its applications in electrostatics are discussed in [305] and in
other chapters of this thesis.

Distribution of electrical charges
The most classical example of a system with Coulombian interactions is a system of charged parti-
cles confined to some volume, even if it was not studied (from a mathematical point of view) until
almost a hundred years after Coulomb’s law was introduced [223, 443]. The classical mathemati-
cal formulation of this problem considers p+1 charges fixed at points a0, . . . ,ap ∈C with weights
η0, · · · ,ηp and n moveable charges x1, . . . ,xn. The questions is then what x-values give the extreme
points of L(x1, . . . ,xn) given by

L(x1, . . . ,xn) =
n

∑
k=1

p

∑
j=0

η j log
(

1
|a j− xk|

)
+ ∑

1≤i<k≤n
log
(

1
|ai− xk|

)
.

More background on this type of problem together with a collection of recent results can be
found in [173]. If there are no fixed charges the problem becomes equivalent to maximising the
absolute value of the Vandermonde determinant similar to finding the Fekete points. The problems
discussed in Chapter Chapter 5 and Chapter 9 belongs to the class of equations that are called
Schrödinger-like in [173].

Sphere Packing
There are several different interaction kernels apart from the logarithmic interaction kernel char-
acterised by, g(x) = − log(x), that are interesting in mathematical physics, especially statistical
mechanics and quantum mechanics. One important class of interaction kernels are those given by

g(x) =
1
|x|s

where s is a positive integer. When this interaction kernel is used value given by for-

mula (1.158) is called the Riesz s-energy. There is a large body of significant literature, in [421]
over 30 references are listed as introduction to different related problems [91, 92, 93, 94].

It is worth noting that lim
s→∞

(
1− 1
|x|s

)
= − log(|x|) which connects the minimisation of the

Riesz s-energy to the Fekete points.
If we instead s→ ∞ the problem of minimising the Riesz s-energy formally corresponds to

the optimal sphere-packing problem, that is finding the arrangement of non-overlapping identical
spheres that cover as much of a space as possible. This is a classical problem where extensive effort
has gone into finding optimal packings but for many years the problem was only fully solved in
one, two and three dimensions, until recently when surprisingly simple proofs were found for 8 and
24 dimensions (seemingly without giving any results for any number of dimensions in-between).
For a thorough collection of classical results see [58] and for the recent results see [91, 92, 93, 477].
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Coulomb Gas
In mathematical physics a system of particles whose energy can be described by (1.158) is often
called a Coulomb gas [167, 326, 421]. One of the most wide reaching results in the analysis of
Coulomb gases was that many gas systems can be described using random matrices that belongs
to a so–called–ensemble which is defined by matrices with random elements. The foundational
results were found in the early 1960s and applied to the cases where β = 1,β = 2 and β = 4,
[131, 132, 133, 134, 135, 136]. These cases will be briefly discussed in Section 1.5.5 and describe
where the Vandermonde determinant appears the probability density functions for the eigenvalues
of the random matrices. If the same theory is extended to other values of it can also be connected
to equations similar to the Harish-Chandra–Itzykson–Zuber integral formula described in Equation
(1.134), [167].

1.6 Symmetric Cones and Jordan Algebras
This section provides the overview of the structural analysis of symmetric cones and Jordan al-
gebras which are very important for understanding of the generalized concepts such as Gamma
functions, Beta function, hypergeometric functions, zonal polynomials, orthogonal polynomials
and Wishart Ensembles that will be discussed mainly in Chapter 8 and Chapter 9.

Let (E,〈., .〉) be an Euclidean vector space and let GL(E) be the group of general linear trans-
formations on E. Let Ω a convex cone satisfying αx+βy∈Ω for any α,β > 0 such that α +β < 1
and x,y ∈Ω. Considering Ω to be a subset of E, then the set Ω has several interesting properties.

To describe them, let GL(E) be the group of all invertible linear operators in E (GL stands for
General Linear). Also, let Ω denote the closure of Ω in E, then the convex cone Ω is proper if
Ω
⋂
(−Ω) = {0}, full if Ω−Ω = E, where the set Ω−Ω = {x− y : x ∈Ω,y ∈Ω} is the smallest

subset E containing Ω.

Definition 1.6.1 ([155]). The automorphism group G(Ω) of the set Ω is defined by

G(Ω) = {g ∈ GL(E) : gΩ = Ω}.

An element g ∈ g ∈ GL(E) belongs to G(Ω) if and only if gΩ = Ω.

Let Ω be again the set of all m×m positive-definite matrices. Let g be an invertible m×m
matrix with positive determinant. The linear operator ρ(g) acting in the linear space Sym(m,R) by

ρ(g)x = gxg>, x ∈ Sym(m,R),

leaves Ω invariant. We proved that the group G = GL+(m,R) is a subgroup of G(Ω) (the upper
index, +, stands for the positive determinant).

We write down a list of properties of the set Ω.

Theorem 1.6.1. The set Ω has the following properties:
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(i) Ω is a cone: x ∈Ω and λ > 0 imply that λx ∈Ω.

(ii) Ω is convex: x, y ∈Ω and λ ∈ [0,1] imply that λx+(1−λ )y ∈Ω.

(iii) The open convex cone Ω is self-dual: we have Ω
∗ = Ω, where

Ω
∗ = {y ∈ E: (x|y)> 0 for all x ∈Ω\{0}}

is the open dual cone of Ω.

(iv) The open cone Ω is homogeneous: for all x, y ∈Ω there exists g ∈ G(Ω) such that gx = y.

(v) Finally, the symmetric (self-dual and homogeneous) cone Ω is irreducible: there do not exist
nontrivial subspaces E1, E2 and symmetric cones Ω1 ⊂ E1, Ω2 ⊂ E2 such that E = E1⊕E2
and Ω = Ω1×Ω2.

Do there exists symmetric irreducible cones besides the cone Ω = Πm(R) of m×m positive-
definite matrices with real entries? Can we define the Wishart distributions on all symmetric irre-
ducible cones?

To answer these questions, turn the linear space E = Sym(m,R) into an algebra.

1.6.1 Euclidean Jordan Algebras
Definition 1.6.2 ([155]). A real linear space E is called an algebra if (x,y) 7→ x ◦ y is a bilinear
mapping from E×E to E is defined. The above mapping is called a product.

Example 1.6.2. Let E = Sym(m,R). Define the product by

x◦ y =
1
2
(xy+ yx).
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Jordan algebras were introduced by P. Jordan, J. von Neumann, and E. Wigner in [256, 479].
The Euclidean Jordan algebra Sym(m,R) has one more important property.

Definition 1.6.5. An nonempty subset I of a commutative (i.e., satisfying (1.159a)) algebra is called
an ideal if x◦ y ∈ I as long as x ∈ E and y ∈ I.

It is obvious that any algebra E contains at least two ideals: {0} and E. The above ideals are
called trivial.

Definition 1.6.6. An algebra E is called simple if it does not contain nontrivial ideals.

The Euclidean Jordan algebra Sym(m,R) is simple, see [155, Theorem V.3.7].
The following result explains why we introduced Jordan algebras. It describes a one-to-one

correspondence between irreducible symmetric cones and simple Euclidean Jordan algebras.

Theorem 1.6.3. In a simple Euclidean Jordan algebra, the set Ω of squares of all invertible el-
ements is an irreducible symmetric cone. Conversely, any irreducible symmetric cone is a set of
squares of invertible elements of a certain simple Euclidean Jordan algebra.

1.6.2 The Cone of Positive Definite Symmetric Matrices
Denoting by Sym(m,R) the space of m×m real symmetric matrices. Then, an inner product on
this space is given by

(x|y) = tr(xy) = ∑
i, j

xi jyi j

= ∑
i

xiiyii +2∑
i< j

xi jyi j.

Thus for a symmetric matrix x, one associates the quadratic form

Q(ξξξ ) = ∑
i, j

xi jξiξ j.

Considering the vector ξξξ as an m×1 matrix, then the quadratic form can be written as

Q(ξξξ ) = (x|ξξξξξξ
>).

where > represents transpose. The quadratic form Q, or the symmetric matrix x, is said to be
positive definite [155] if

∀ ξξξ ∈ Rm, ξξξ 6= 0, then Q(ξξξ )> 0,

and positive semi-definite if
∀ ξξξ ∈ Rm,Q(ξξξ )≥ 0.
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We recall that a positive quadratic form Q is a sum of the squares of k independent linear forms
(0≤ k ≤ m) where

Q((((ξ )) =
k

∑
j=1

(
m

∑
i=1

αi jξ
2
j

)
or x =

k

∑
j=1

α jα
>
j =αααααα

>,

where x is a symmetric matrix corresponding to Q; α j = (α1 j, . . . ,αm j)
> and ααα = αi j is a real n×k

matrix. The number k is the rank of x. The matrix x is positive definite if and only if k = m.

Lemma 1.6.4 ([155]). Let Ω = Πm(R) be the set of positive definite symmetric matrices. Then, the
set Ω is an open convex cone whose closure Ω is the set of positive symmetric matrices.

Proof. First, we prove that the the symmetric cone Ω is self-dual. Let y belong to the self-dual Ω
?.

If ξξξ is any non-zero m×1 matrix, then the matrix x = ξξξξξξ
> belongs to Ω\{0}, therefore

∑
i j

yi jξiξ j = (x|y)> 0,

which directly implies that y belongs to Ω and Ω
? ⊂ Ω. Thus, any element in x in Ω\{0} can be

written as

x =
k

∑
j=1

α jα
>
j ,

where the α j are independent m×1 matrices and k ≥ 1. Therefore, if y belongs to Ω, then

(x|y) =
k

∑
j=1

(y|α jα
>
j )> 0,

which proves that Ω⊂Ω
?.

Next, we prove that Ω is homogeneous. For an element g of the group GL(m,R) and a sym-
metric matrix x, we set

ρ(g)x = gxg>,

then ρ(g) is a linear transformation of the space Sym(m,R) which belongs to G(Ω). If x belongs
to Ω, then

x =αααααα
>,

where ααα is invertible m×m matrix, or

x = ρ(ααα)Im.

which show that Ω is homogeneous.
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1.6.3 Properties and Examples of Jordan Algebras
Now, for an element x in V, let L(x) be a bilinear map of V defined by

L(x)y = xy.

Then, an algebra V over the field F is said to be a Jordan algebra if for all elements x and y in V:

xy = yx (J1)

x(x2y) = x2(xy). (J2)

The property (J2) says that for every x the endomorphisms and L(x2) commute. Thus, using the
notation

[S,T ] = ST −T S,

where S and T are two endomorphisms of the vector space V, thus the property J2 can be written
as

[L(x),L(x2)] = 0. (J′2)

In general, a Jordan algebra is not associative.

Example 1.6.5 ([155]). (1) If A is an associative algebra over F, we can define on A a Jordan
algebra structure by defining the new product:

x◦ y =
1
2
(xy+ yx).

It is easy to check that with the new product A is a Jordan algebra, we call the operation ◦
the Jordan product.

(2) If V is a linear subspace of an associative algebra A which is square stable, that is, for any
x in V, x2 belongs to V, then V is equipped with Jordan product

x◦ y =
1
2
(xy+ yx),

is a Jordan algebra. (In fact, we have x◦ y =
1
4
(
(x+ y)2− (x− y)2).

(3) A special case of (2) above, take
A = M(m,R)

the algebra of m×m matrices with entries in R, and V the space Sym(m,R) of symmetric
matrices.

108

Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

1.6.3 Properties and Examples of Jordan Algebras
Now, for an element x in V, let L(x) be a bilinear map of V defined by

L(x)y = xy.

Then, an algebra V over the field F is said to be a Jordan algebra if for all elements x and y in V:

xy = yx (J1)

x(x2y) = x2(xy). (J2)

The property (J2) says that for every x the endomorphisms and L(x2) commute. Thus, using the
notation

[S,T ] = ST −T S,

where S and T are two endomorphisms of the vector space V, thus the property J2 can be written
as

[L(x),L(x2)] = 0. (J′2)

In general, a Jordan algebra is not associative.

Example 1.6.5 ([155]). (1) If A is an associative algebra over F, we can define on A a Jordan
algebra structure by defining the new product:

x◦ y =
1
2
(xy+ yx).

It is easy to check that with the new product A is a Jordan algebra, we call the operation ◦
the Jordan product.

(2) If V is a linear subspace of an associative algebra A which is square stable, that is, for any
x in V, x2 belongs to V, then V is equipped with Jordan product

x◦ y =
1
2
(xy+ yx),

is a Jordan algebra. (In fact, we have x◦ y =
1
4
(
(x+ y)2− (x− y)2).

(3) A special case of (2) above, take
A = M(m,R)

the algebra of m×m matrices with entries in R, and V the space Sym(m,R) of symmetric
matrices.

108

108



Symmetric Cones and Jordan Algebras

(4) Let W be a vector space over F, and B be a symmetric bilinear form defined on W. Then,
on the vector space V = F×W we define the product

(λ ,u)(µ,v) = (λ µ +B(u,v),λv+µu).

If x = (λ ,u), then
x2 = (λ 2 +B(u,u),2λu).

If we write T = L(0,u), then

L(x) = λ I+T

L(x2) =
(
λ

2 +B(u,u)I
)
+2λT,

therefore L(x) and L(x2) commute and V is a Jordan algebra.

Proposition 1.6.1. Let V be a Jordan algebra. Then, the following identities hold:

(i) [L(x),L(y2)]+2[L(y),L(x,y)] = 0

(ii) [L(x),L(yz)]+ [L(y),L(zx)]+ [L(z),L(xy)] = 0

(iii) L(x2y)−L(x2)L(y) = 2
(
L(xy)−L(x)L(y)

)
L(x) = 0

Proof. Differentiating (J′2) in the x direction:

Dx[L(x),L(y2)] = 0,

we obtain (i).
Applying Dz to (i) one obtains (ii).
Applying both sides of (i) to an element z, the resulting identity can be rewritten as

L(x)L(y2z)−L(y2)(xz) = 2L(xy)(yz)−2L(y)
(
(xy)z

)
,

valid for all x,y and z.
Using commutativity, this can be written as

L(y2z)x−L(y2)L(z)x = 2L(yz)L(y)x−2L(y)L(z)L(y)x.

This again can be written as

L(y2z)−L(y2)L(z) = 2
(
L(yz)−L(y)L(z)

)
L(y),

which is exactly (iii).
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Relationship between Euclidean Jordan Algebras and Symmetric Cones
For every Euclidean Jordan algebra E the set of squared elements x2 where x ∈ E is a closed cone.
The interior of this cone denoted by E+, is a symmetric cone and is called the cone of positive
elements of E. Equivalently, E+ is the set of all squared x2 elements, that is, det(x) 6= 0. Conversely,
if Ω is a symmetric cone and ε ∈Ω, then one can construct a Euclidean Jordan algebra E such that
E+ = Ω and ε is the identity element of E.

1.6.4 Classification of Irreducible Symmetric Cones
The irreducible symmetric cones are in one-to-one correspondence with simple Euclidean algebras,
which classified into four families of classical Jordan algebras together with a single exceptional
Jordan algebra.

The first three families of classical Jordan algebras are matrix spaces. More specifically, let
D = R,C or the quaternions H. Denote by x the conjugate of x in D, Rex the real part of x, and
Hm(D) the set of all m×m Hermitian matrices over D.

Recalling that X?, the adjoint of the matrix X is obtained by taking the conjugate of each of the
entries and then transposing the matrix. Then, the matrix X is Hermitian if it is equal to X?.

This space of Hermitian matrices equipped with the Jordan product

X◦Y =
1
2
(
XY+YX

)
and the scalar product (

X|Y
)
= Retr

(
XY
)

is a simple Euclidean Jordan algebra of rank r and corresponds to the irreducible symmetric cone
of positive definite matrices over R,C or H, respectively.

The dimension of Hm(D) over R is m+m(m−1)d/2, where d is called the Pierce constant, is
equal to the dimension of the space of D over R. In particular, when D is the set of real numbers
Hm(R) is indeed Sm(R).

The fourth class of the Jordan algebras is the Minkowski space R×Rn−1,n > 2 which is the
vector space equipped with the product (ς ,x)(ξ ,y) = ςξ + xy,ςy+ ξ x. This exactly corresponds
to the Lorentz cone

Ln = {(ς ,x) ∈ R×Rn−1 : ς > ‖x‖}.

The exceptional Jordan algebra can be described as follows. First notice that H×H with the
product

(x1,y1)(x2,y2) = (x1x2− y2y1,y1x2 + y2x1)

is a non-associative algebra, called octonions, O. Any element in O can be written as x+ jy, where
j = (0,1) and x,y ∈ H. The conjugation in O can be defined by x+ jy = x− jy. The exceptional
Jordan algebra is H3(O).
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E Ω n r d
R1 (0,∞) 1 1 0
R1×Rm−1

Λm m 2 m−2
Sym(m,R) Πm(R) m(m+1)/2 m 1
Herm(m,C) Πm(C) m2 m 2
Herm(m,H) Πm(H) m(2m−1) m 4
Herm(3,O) Π3(O) 27 3 8

Table 1.4: Classification of simple Euclidean Jordan algebras.

In Table 1.4 we introduce simple Euclidean Jordan algebras. This table is compiled by com-
bining information from [155] and [302]. Simple Euclidean Jordan algebras have been classified
by [256]. We explain the content of Table 1.4.

In Table 1.4, the symbol m runs over the set of all positive integers ≥ 3. In the first column, the
algebra R1×Rm−1 is called the Lorentz algebra. The product in this algebra has the form

(λ ,u)◦ (µ,v) = (λ µ +(u|v),λv+µu), λ ,µ ∈ R1, u,v ∈ Rm−1.

The corresponding cone, Λm, is called the Lorentz cone. It has the form

Λm = {(λ ,u) ∈ R1×Rm−1 : λ
2− (u|u)> 0,λ > 0}.

The symbol Herm(m,C) (resp. Herm(m,H), resp. Herm(3,O)) denotes the Jordan algebra of
all Hermitian matrices of size m×m with complex entries (resp. with entries in the skew field H
of quaternions, resp. with entries in the algebra O of octonions). The scalar product in all of the
above algebras has the form

(x|y) = Retr(xy),

while the Jordan product is standard: x ◦ y = 1
2(xy+ yx). All the cones Ω are the sets of positive-

definite matrices in the corresponding algebras. All algebras in Table 1.4 are pairwise non-isomorphic.
In small dimensions, we have the following isomorphisms:

Sym(1,R)∼ Herm(1,C)∼ Herm(1,H)∼ Herm(1,O)∼ R1,

Sym(2,R)∼ R1⊕R2,

Herm(2,C)∼ R1⊕R3,

Herm(2,H)∼ R1⊕R5,

Herm(2,O)∼ R1⊕R9.

(1.160)

In what follows, the symbol n always denotes the dimension of the real linear space E. All
simple Euclidean Jordan algebras, except the Lorentz cones, will be called matrix algebras.
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In small dimensions, we have the following isomorphisms:

Sym(1,R)∼ Herm(1,C)∼ Herm(1,H)∼ Herm(1,O)∼ R1,

Sym(2,R)∼ R1⊕R2,

Herm(2,C)∼ R1⊕R3,

Herm(2,H)∼ R1⊕R5,

Herm(2,O)∼ R1⊕R9.

(1.160)

In what follows, the symbol n always denotes the dimension of the real linear space E. All
simple Euclidean Jordan algebras, except the Lorentz cones, will be called matrix algebras.
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To explain the fourth column of Table 1.4, denote by e the identity element of the algebra E.
For any x ∈ E, put

m(x) = min{k > 0: (e,x,x2, . . . ,xk) are linearly dependent}. (1.161)

The number m(x) is bounded from above by n, the dimension of E.

Definition 1.6.7. The rank of a Jordan algebra E is given by

r = max{m(x) : x ∈ E}.

To explain the meaning of the last column of Table 1.4, we start from the following result, see
[155].

Theorem 1.6.6. Any simple Jordan algebra contains a Jordan frame, that is, the set {c1, . . . ,cr}
such that

• its elements are orthogonal: ci ◦ c j = 0 if i 6= j;

• its elements are idempotents: c2
i = ci;

• its elements constitute a resolution of identity: c1 + · · ·+ cr = e.

Denote by L (ci) the linear operator in E acting by

L (ci)x = ci ◦ x, x ∈ E.

By [155, Lemma IV.1.3], the linear operators L (ci) and L (c j) commute. Therefore, the admit
a simultaneous diagonalization Let Eii = E(ci,1) be the one-dimensional eigenspace of the linear
operator L (ci) that corresponds to the eigenvalue 1. Let E(ci,1/2) be the eigenspace that corre-
sponds to the eigenvalue 1/2, and let

Ei j = E(ci,1/2)∩E(c j,1/2).

Theorem 1.6.7 ([155]). The space E decomposes into the orthogonal direct sum

E =
⊕

1≤i≤ j≤r

Ei j. (1.162)

The subspaces Ei j with i 6= j have the same dimension.

Denote the above dimension by d. It follows that

n = r+d
r(r−1)

2
. (1.163)

The number d is given in the last column of Table 1.4.
How to define a Wishart distribution on an irreducible symmetric cone Ω? First, we define the

determinant and the trace of an element x of the corresponding Euclidean Jordan algebra E.
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1.6.5 Additional Properties
Throughout our discussion, Ω will be assumed to be an irreducible symmetric cone of positive
elements of a simple Jordan algebra E of dimension n, rank r and the Pierce constant d defined by
n = r+ r(r−1)d/2.

(1) For each x in Ω and g ∈ G we have

(a) detL(x) = det(x)n/r,

(b) detP(x) = (detx)2n/r,

(c) detgx = det(g)r/n det(x) for each g ∈ G,

(d) detP(y)x = (det(x))2 detx,

(e) (gx)−1 = g?−1x−1, where g? is the adjoint of g,

(f) P(x)−1 = P(x−1),

(g) P(x)? = P(x), that is, P(x) is Hermitian.

(b) K acts transitively on the set of primitive idempotents and the set of all Jordan frames.

1.6.6 Trace, Determinant and Minimal Polynomials
Let R[X] be the algebra of polynomials in one variable with real coefficients. It is well-known that
any ideal in R[X] is generated by a unique monic polynomial. In particular, for any x ∈ E, the ideal

J(x) = { p ∈ R[X] : p(x) = 0}

is generated by a polynomial called the minimal polynomial of x. Its degree, m(x), is determined
by Equation (1.161). An element x is called regular if m(x) = r. By [155, Proposition II.2.1], the
set of regular elements is open and dense in E. There exist unique polynomials a1, a2, . . . , ar such
that the minimal polynomial of every regular element x is given by

fx(λ ) = λ
r−a1(x)λ r−1 +a2(x)λ r−2 + · · ·+(−1)rar(x). (1.164)

Moreover, the polynomial a j is homogeneous of degree j.

Definition 1.6.8. The trace of x is tr(x) = a1(x). The determinant of x is det(x) = ar(x).

A Wishart distribution on an irreducible symmetric cone Ω is defined exactly as in Defini-
tion 1.6.12, that is, the Laplace transform of the Wishart random variable Y is defined on the set

ΣΣΣ−Ω = {ΣΣΣ− x : x ∈Ω}

and is given by
LY(x) =

(
det
(
e−ΣΣΣ

−1x
))−λ

. (1.165)

The result by [197] takes the form
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Theorem 1.6.8. The right hand side of Equation (1.165) defines the Laplace transform of a random
variable if and only if

λ ∈ Λ =

{
0,

d
2
,d, . . . ,

(r−1)d
2

}
∪
(
(r−1)d

2
,∞

)
. (1.166)

1.6.7 Special Functions Defined on Symmetric Cones
The wide structure of the Symmetric cones has inspired many research studies in the fields of
harmonic analysis and random fields. In this section we give a brief description of special functions
defined on symmetric cones based on [155].

The Gamma Function of a Cone
Fixing a Jordan frame c1,c2, . . . ,cr in E. For each 1≤ j ≤ r, then e j = c1 + c2 + . . .+ c j is defined
as the idempotent. In general, it can be shown that if c is an idempotent element of E, then the
only possible eigenvalues of the linear transformation L(c) are 0,1/2,1. One can easily see that
the the eigenspace, E(e1,1), corresponding to eigenvalues 1 of L(e j) is a Jordan algebra with the
multiplication inherited from E.

Let Ω j be the cone of positive elements and
( j)
det the determinant with respect to this Jordan

algebra. Let P j : E→ E(e1,1) be the orthogonal projection on E(e1,1). The principal minor, ∆ j(x)

is a homogeneous polynomial of degree j on E defined by ∆ j(x) =
( j)
det(Pj(x)). We extend this

definition as follows. For each s = (s1,s2, . . . ,sr) ∈ Cr we get

∆s(x) = ∆
s1−s2
1 (x)∆s2−s3

2 (x) . . .∆r(x)sr .

For each s ∈ Cr the Gamma function is given by

ΓΩ(s) =
∫

Ω

exp{− tr(x)}∆s(x)det(x)−
n
r dx. (1.167)

This integral is absolutely convergent if Res j > ( j−1)d/2, for j = 1, . . . ,r. Moreover

ΓΩ(z) = (2π)
n−r

2

r

∏
j=1

Γ(s j− ( j−1)
d
2
)

In particular, identifying z ∈ C with (z, . . . ,z) ∈ Cr, we have

ΓΩ(z) =
∫

E+

exp{− tr(x)}det(x)z− n
r dx. (1.168)
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Thus we have the following definition for the Gamma function on a symmetric cone:

Definition 1.6.9. The gamma function determined by the cone Ω is

ΓΩ(s) =
∫

Ω

exp(− tr(x))(det(x))s−n/r dx, Res > n/r−1.

When Ω = (0,∞), we recover Equation (1.167), and when Ω = Πm(R), we recover (1.168).
By [155, Corollary VII.1.3, part (i)], we have

ΓΩ(s) = (2π)(n−r)/2
r−1

∏
i=0

Γ(s− id/2). (1.169)

Note that when Ω = Πm(R), we have

ΓΩ(s) = 2(n−r)/2
Γm(s) (1.170)

because of different parametrisations.
When λ ∈ ((r− 1)d/2,∞), the Wishart distribution is supported by Ω and has probability

density

fY(x) =
(det(ΣΣΣ))λ

ΣΣΣΣΣΣ(λ )
exp(− tr(ΣΣΣ◦ x))(det(x))λ−n/r1ΣΣΣ(x). (1.171)

For the case of Ω = Πm(C), the Wishart distribution was studied by [205] and [267], for the
case of Ω = Πm(H) by [11], for the case of Ω = Π3(O) by [166].

Beta Functions
Definition 1.6.10. The beta function on a symmetric cone Ω is defined by the integral

Bω(a,b) =
∫

Ω
⋂
(x−Ω)

∆a− n
r
(x)∆b− n

r
(e− x)dx,

where a,b ∈ Cr and e−Ω = {e− x : x ∈Ω}.

This integral converges absolutely if Rea j > ( j−1)d/2 and Reb j > ( j−1)d/2. In this case,

BΩ(a,b) =
ΓΩ(a)ΓΩ(b)
ΓΩ(a+b)

and ∫
Ω
⋂
(x−Ω)

∆a− n
r
(y)∆b− n

r
(x− y)dy = BΩ(a,b)∆a+b− n

r
(x).
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The Space of Polynomials
Definition 1.6.11. A function f : E→ R is a polynomial on E if there is a basis {v1,v2, . . . ,vn} of

E and a polynomial p ∈ R[t1, . . . , tn] such that for any linear combination x =
n

∑
i=1

ξivi then

f (x) = p(ξ1, . . . ,ξn).

One can check that this definition is independent of the choice of basis. The set of all poly-
nomials over E is denoted by P(E). The group action of G on E can be naturally extended to an
action on P(E) by defining gp(x) = p(g−1x). Let Pλλλ (E) be the subspace of P(E) generated by
the polynomials g∆λλλ ,g ∈ G. Then, every p in Pλλλ (E) is a homogeneous polynomial of degree |λλλ |.

Spherical Polynomials
Recalling that K, the stabilizer of the identity e, is a compact Lie subgroup of G, thus there exists a
Haar measure on K. Thus for each partition λλλ , the spherical polynomial Φλλλ is given by

Φλλλ (x) =
∫

K
∆λλλ (kx)dµK(k),

where µK is the normalized Haar measure on K. The function Φλλλ is indeed a homogeneous poly-
nomial of degree |λλλ | and is invariant under the action of K, that is, Φλλλ (kx) = Φλλλ (x) for any k ∈ K
and xE. Moreover, the spherical polynomial Φλλλ is up to a constant factor, the only K−invariant
polynomial in Φλλλ (E). More precisely, if p is a K−invariant homogeneous polynomial in Φλλλ (E),
then ∫

K
p(kx)dµK(k) = p(e)Φλλλ (x). (1.172)

Consequently, for any g ∈ G ∫
K

Φλλλ (x)(gkx)dµK(k) = Φλλλ (ge)Φλλλ (x). (1.173)

If x ∈Ω and Reγ > (r−1)d/2, then for any y in Ω and g ∈Ω we have∫
Ω

e− tr(xy)
Φλλλ (gx)det(x)γ− n

r dx = ΓΩ(λ + γ)∆−γ(y)Φλλλ (gx−1). (1.174)

Zonal Polynomials
The Pochhammer symbol for Ω is defined by

(s)λ =
ΓΩ(s+λ )

ΓΩ(s)
, s ∈ C.
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This definition generalizes the classical Pochhammer symbol. The Zonal polynomial Zλ is a ho-
mogeneous K−invariant polynomial of E defined by

Zλ (x) = dλ

|λ |!(n
r

)
λ

Φλ (x), (1.175)

where dλ is the dimension of the vector space Pλ (E), and Pλ is the spherical polynomial. Zonal
polynomials are K−invariant polynomials normalized by the property

tr(x)k = ∑
|λ |=k

Zλ (x), x ∈Ω. (1.176)

Notice that the function p(x) = tr(x)k on Ω is a K−invariant homogeneous polynomial in Pλ (E).
It follows from (1.173) that for each x ∈ E and y ∈ ω∫

K
Zλ (P(y

1
2 )kx)dµK(x) =

Zλ (y)Zλ (x)
Zλ (e)

. (1.177)

Hypergeometric Polynomials
Let a1, . . . ,ap and b1, . . . ,bq be real numbers with ai− (i− 1)d/2 ≥ 0,b j − ( j− 1)d/2 ≥ 0 and
x,y ∈ E. The hypergeometric function pFq is defined by

pFq(a1, . . . ,ap,b1, . . . ,bq,x,y) =
∞

∑
k=1

∑
|λ |=k

(a1)λ · · ·(ap)p

(b1)λ · · ·(bp)p

Zλ (x)
k!

Zλ (y)
Zλ (e)

.

For y = e we obtain pFq(a1, . . . ,ap,b1, . . . ,bq,x) =p Fq(a1, . . . ,ap,b1, . . . ,bq,x,e). This implies that

pFq(a1, . . . ,ap,b1, . . . ,bq,x) =
∞

∑
k=1

∑
|λ |=k

(a1)λ · · ·(ap)p

(b1)λ · · ·(bp)p

Zλ (x)
k!

.

This series converges absolutely if p ≤ q and diverges if p > q. Furthermore, 0F0(x) = etr(x) and
0F1(b,x) = det(e− x)−b.

Suppose x ∈Ω and g ∈ G. By using the integral Equation (1.177) for p≤ q we obtain∫
K

pFq(a1, . . . ,ap,b1, . . . ,bq,g(kx))dµK(x) =p Fq(a1, . . . ,ap,b1, . . . ,bq,x,ge). (1.178)

Similarly, if Reγ > (r− 1)d/2,y ∈ Ω and p < q, or y ∈ e−Ω and p = q, then by applying
Equation (1.174) we obtain∫

Ω

e− tr(xy)
pFq(a1, . . . ,ap,b1, . . . ,bq,gx,z)det(x)γ− n

r dx

= ΓΩ(γ)det(γ)−γ
p+1Fq(a1, . . . ,ap,γ,b1, . . . ,bq,gy−1,z). (1.179)

We conclude this section with the following important proposition which can be used to derive
Beta and Wishart type distributions [155].
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|λ |!(n
r

)
λ
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|λ |=k
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K
Zλ (P(y

1
2 )kx)dµK(x) =

Zλ (y)Zλ (x)
Zλ (e)

. (1.177)
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Zλ (x)
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Zλ (e)

.
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(b1)λ · · ·(bp)p

Zλ (x)
k!
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Proposition 1.6.2. Suppose that p ≤ q+1,Reη1 > (r−1)d/2 and Reη2 > (r−q)d/2. If g ∈ G
such that ge ∈Ω

⋂
(e−Ω), then∫
Ω
⋂
(e−Ω)

pFq(a1, . . . ,ap,b1, . . . ,bq,gx)det(x)η1− n
r det(e− x)η2− n

r dx

= BΩ(η1,η2)p+1 p+1Fq(a1, . . . ,ap,η1,b1, . . . ,bq,η1 +η2,ge). (1.180)

1.6.8 Gaussian, Chi-Square and Wishart Distributions on Symmetric
Cones

Consider the following classical statistical problem. Let X be a normal random variable with mean
µ and variance σ2. Let x1, . . . , xN be a sample from the normal population distributed like X. It is
well known that the maximum likelihood estimates of the parameters µ and σ2 are

µ̂ =
1
N

N

∑
i=1

xi, σ̂
2 =

1
N

N

∑
i=1

(xi− µ̂)2.

Moreover, the random variable Y =
N
σ2 σ̂

2 has the chi-square distribution with N degrees of free-
dom. The probability density of the chi-square distribution with N degrees of freedom was derived
by William S. Gosset, a brewer of Guinness beer, in [446]. Gosset published his research under the
pen name “Student”. According to [510],

At Guinness the scientific brewers, including Gosset, were allowed by the company
to publish research so long as they did not mention (1) beer, (2) Guinness, or (3) their
own surname.

The above probability density has the form

fY(x) =
1

2N/2Γ(N/2)
exp(−x/2)xN/2−11(0,∞)(x),

where Γ is the gamma-function:

Γ(s) =
∫ ∞

0
exp(−x)xs−1 dx. (1.181)

It follows from (1.181) that the function

fY(x) =
xλ−1 exp(−x/σ)

σλ Γ(λ )
1(0,∞)(x)

is a probability density as long as λ > 0 and σ > 0. The corresponding probability distribution is
the gamma distribution with shape parameter λ and scale parameter σ . For particular values of
λ = N/2 and σ = 2, we return back to the chi-square distribution with N degrees of freedom.
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Laplace Transform and The Wishart Density
Recalling the fact that the Laplace transform of a random variable Y is defined as

LY(s) = E[exp(sY)]

for all complex numbers s such that the expectation exists.

Remark 1.6.9. In many sources, the above definition contains an opposite sign:

LY(s) = E[exp(−sY)].

We choose the convention by [74] and subsequent papers.

In particular, for the gamma distribution we have

Lλ ,σ (s) = (1−σs)−λ , Res < σ
−1.

Observe that
lim
λ↓0

Lλ ,σ (s) = 1.

The right hand side is the Laplace transform of the random variable Y = 0. We say that this random
variable has gamma distribution with shape parameter λ = 0 and an arbitrary scale parameter σ > 0.

It is easy to generalise the above discussion to the case of random vectors. Specifically, let X
be a m-dimensional normal random vector with mean µµµ and covariance matrix ΣΣΣ. Let x1, . . . , xN

be a sample from a normal population distributed like X. The maximum likelihood estimates of
the parameters µµµ and ΣΣΣ are

µ̂µµ =
1
N

N

∑
i=1

xi, Σ̂ΣΣ =
1
N

N

∑
i=1

(xi− µ̂µµ)(xi− µ̂µµ)>.

Moreover, the random variable Y = NΣ̂ΣΣ has the classical Wishart distribution with N degrees of
freedom and covariance matrix ΣΣΣ, see [357]. Denote this distribution by W c

m (N,ΣΣΣ). If N ≥m, then
the probability density of the above distribution has the form

fY(x) =
1

2Nm/2Γm(N/2)(detΣΣΣ)N/2 exp
(
− tr
(
ΣΣΣ
−1x
)
/2
)
(det(x))(N−m−1)/21Ω(x), (1.182)

where Ω is the set of all symmetric positive-definite m×m matrices, Γm is the multivariate gamma
function defined for all s ∈ C with Res > (m−1)/2 as

Γm(s) =
∫

Ω

exp(− tr(x))(det(x))s−(m+1)/2 dx, (1.183)

see [357, Definition 2.1.10], and where tr denotes the trace of a matrix.
For the case of s = 2, this density was derived in [164]. The case of an arbitrary m was

considered in [496]. The integral in the right hand side of Equation (1.183) was calculated in
[246].
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Theorem 1.6.10 ([246]). We have∫
Ω

exp(− trx)(detx)s−(m+1)/2 dx = π
m(m−1)/4

m−1

∏
i=0

Γ(s− i/2).

Later, this integral appeared in [427] and became known in the number-theoretical community
as the Siegel integral.

Let E = Sym(m,R) be the linear space of all symmetric m×m matrices with real entries.
Introduce the scalar product on E by (x|y) = tr(xy). The Laplace transform of a E-valued random
matrix Y is defined by

LY(x) = E
[
exp
(
(x|Y )

)]
for all x ∈ E for which the expectation exists. In the case of the classical Wishart distribution we
obtain

LY(x) =
(
det
(
I−2ΣΣΣx

))−N/2
, (1.184)

where I is the m×m identity matrix.
It is convenient to change slightly the parametrisation of the classical Wishart distribution.

Denote Wm(N,ΣΣΣ) = W c
m (2N,ΣΣΣ−1/2). The probability density (1.182) becomes

fY(x) =

(
det
(
ΣΣΣ
))N

ΓΩ(N)
exp(− tr(ΣΣΣx))(detx)N−(m+1)/21Ω(x),

while the Laplace transform (1.184) becomes

LY(x) =
(
det
(
I−ΣΣΣ

−1x
))−N

.

In particular, when m = 1, we obtain an alternative parametrisation of the chi-square distribution:

fY(x) =
1

Γ(N)
exp(−x)xN−11(0,∞)(x).

Definition 1.6.12. A Ω-valued random matrix Y has Wishart distribution with shape parameter λ

and scale parameter Σ if and only if

LY(y) =
(
det
(
I−ΣΣΣ

−1y
))−λ

. (1.185)

We introduce a family of Wishart distributions as a particular case of the following general
construction. Let µ be a measure defined on the Borel σ -field of the Euclidean finite-dimensional
space E. Let

Lµ(y) =
∫

E
exp((x|y))dµ(y)

be the Laplace transform of µ , and assume that the interior Y(µ) of the set of all y ∈ E for which
Lµ(y)< ∞ is not empty.
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Definition 1.6.13. The set F(µ) = {Py,µ : y ∈ Y(µ)} of probability measures on E defined by

dPy,µ(x) =
1

Lµ(y)
exp((x|y))dµ(x)

is called the natural exponential family generated by µ .

Observe that
LPy,µ (z) =

1
Lµ(y)

∫
E

exp((x|z))exp((x|y))dµ(x)

=
1

Lµ(y)

∫
E

exp((x|z+ y))dµ(x)

=
Lµ(z+ y)

Lµ(y)
.

The standard reference for natural exponential families is [22, 23].

Example 1.6.11. Define the measure µλ by

dµλ (x) =
1

Γm(λ )
(detx)λ−(m+1)/21Ω(x)dx, λ >

m−1
2

.

The Laplace transform of this measure is

Lµλ
(y) =

(
det(−y)

)−λ
, y ∈ −Ω = {−x : x ∈Ω}.

The corresponding natural exponential family is

dPΣΣΣ,µλ
(x) =

1
Lµλ

(ΣΣΣ)
exp((x|ΣΣΣ))dµλ (x)

=

(
det
(
−ΣΣΣ
))λ

Γm(λ )
exp((x|ΣΣΣ))(detx)λ−(m+1)/21Ω(x)dx

for ΣΣΣ∈−Ω. We would like to run ΣΣΣ over Ω. For that, replace ΣΣΣ with−ΣΣΣ. We obtain the distribution

dPΣΣΣ,µλ
(x) =

(
det
(
ΣΣΣ
))λ

Γm(λ )
exp(− tr(ΣΣΣx))(detx)λ−(m+1)/21Ω(x)dx. (1.186)

This distribution is called the Wishart distribution with shape parameter λ > (m−1)/2 and scale
parameter ΣΣΣ ∈Ω.

In particular, the Wishart distribution with shape parameter λ = N/2 and scale parameter
2ΣΣΣ
−1 is the classical one. When m = 1, we obtain an alternative parametrisation of the exponential

distribution:

dPσ ,µλ
(x) =

σλ

Γ(λ )
exp(−σx)xλ−11(0,∞)(x)dx.
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The Laplace transform of the Wishart distribution is

LPΣ,µ
λ
(y) =

Lµλ
(y−ΣΣΣ)

Lµλ
(−ΣΣΣ)

=

(
det
(
ΣΣΣ
))λ(

det
(
ΣΣΣ− y

))λ
=
(
det
(
I−ΣΣΣ

−1y
))−λ

Does such a distribution exist for the remaining values of λ? The answer to this question and
related ideas are discussed in detailed and illustrated in Chapter 9.

Detailed discussion and construction of the degenerate and non-degenerate Wishart distribu-
tions in the cones including R1×Rm−1, Sym(m,R), Herm(m,C), Herm(m,H) and Herm(3,O)
follows in Chapter 8 and Chapter 9.

1.7 Vandermonde Matrix and Determinant in Financial
Mathematics

In this section we briefly discuss some mathematical concepts commonly in pricing theory and
portfolio construction. These and other related ideals will be further discussed in Chapter 7.

According to [125], one of the most influential ideas of modern finance is the Efficient Market
Hypothesis (EMH), the notion that prices in financial markets fully reflect all available information
and that there are no trading strategies that produce positive, expected, risk-adjusted excess returns.
This, still arguable, situation follows from the view that, in an intensely competitive financial mar-
ket, the response of investors to new information is rapid and rational, bidding prices up or down
until they eliminate any advantage to trading on the new information, for more detailed discussion
see, [169, 201, 245, 261, 262, 263, 359, 363].

The above market environment can best be described as an Arbitrage-free market which is
a market that is characterised by the No Free Lunch with Vanishing Risk, NFLVR. The NFLVR
condition achieved by utilizing a sequence of time self-financing portfolios which converge to an
arbitrage strategy, whereby an approximate self-financing portfolio, more detailed discussion can
be got from [37, 43, 99, 100, 112, 113, 424, 425, 439, 442, 495, 508].

Under assumptions of no arbitrage, there exists a unique probability, called an equivalent mar-
tingale measure such that the price of a claim is the expectation of its discounted pay-off as dis-
cussed in [287, 292, 300, 399].

The condition of NFLVR is considered as the basis for the fundamental theorem of asset pricing
which provides the necessary and sufficient conditions for a market to be arbitrage free and for the
market to be complete [240, 242]. An arbitrage opportunity in simple terms is a means of earning
or making money without an initial investment and without the possibility of making a loss. In
economics and finance [239], a complete market is a market is a market with two conditions:

(1) Negligible transaction costs and therefore also perfect information,

(2) there is a price for every asset in every possible state of the world.
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The condition of NFLVR is considered as the basis for the fundamental theorem of asset pricing
which provides the necessary and sufficient conditions for a market to be arbitrage free and for the
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(2) there is a price for every asset in every possible state of the world.
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Completeness is a common property of market models as discussed in [161, 329, 330, 331, 422,
423] in relation to modelling derivatives.

A derivative security (or simply a derivative) is a security whose value depends on the values of
other more basic securities or assets called underlying assets or variables. The underlying variable
or entity can be an asset, stock of goods, a bond, a currency exchange, index or interest rate, or the
quotation of commodities such as god, oil, or wheat. Derives can be used for a number of purposes,
including

(i) insuring against price movement or the principle of hedging;

(ii) increasing exposure to price movements for speculation, anticipation or getting getting ac-
cess to otherwise hard-to-trade assets or markets

Some of the most common derivatives include forwards, futures, options, swaps and variations of
these such as synthetic collateralized debt obligation and credit default swaps.

In recent years, derivative securities have become more important than ever in financial markets
[271]. Futures, options and swaps and many other exotic options are traded outside of exchanges
called over-the-counter (OTC) markets, by financial institutions and their corporate clients. Deriva-
tives are one of the three main categories of financial instruments, the other categories being stocks,
that is, equities or shares, and debts, that is, bonds and mortgages.

1.7.1 Money Market Account
According to [271], considering a bank deposit with initial principle F = 1. The amount of the
deposit after time t periods is denoted by Bt . The interest paid for a period t is equal to Bt+1−Bt .
If the interest paid is proportion to the amount Bt , it is called compound interest [271]. That is, the
compound interest is such that the amounts of deposit satisfy the relation

Bt+1−Bt = rBt , t = 0,1,2,3,4, . . . , (1.187)

where the multiplier r > 0 is called the interest rate. It follows from (1.187) that

Bt+1 = (1+ r)Bt , (1.188)

Thus using the recursion (1.188) for t = 0,1,2,3,4, . . . we have,

B1 = B0(1+ r)

B2 = B1(1+ r) = B0(1+ r)2

B3 = B2(1+ r) = B0(1+ r)3

B4 = B3(1+ r) = B0(1+ r)4

· · · · · ·
Bt = B0(1+ r)t = (1+ r)t , for B0 = 1. (1.189)
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The deposit Bt is often called the money-market account.
Suppose now that the annual interest rate is r and the interest is paid n times each year. We

divide one year into n equally spaced sub-periods, so that the interest rate for each period is given
by r/n. Following the same argument as above, it is readily seen that the amount of deposit after
m periods is given by

Bm =
(

1+
r
n

)m
, m = 0,1,2,3,4, . . . . (1.190)

For example, when the interest is semi-annual compounding, the amount deposited after two years
is given by

B4 =
(

1+
r
2

)4
.

Suppose, t = m/n or m = nt for some integers m and n, and let B(t) denote the amount of deposit
at time t for the compounding interest with annual interest r. From (1.190) we have

B(t) =
(

1+
r
n

)nt
. (1.191)

Now, what if we let n tend to infinity? That is, what if the interest is continuous compounding?
This can easily be established because, form the common limit theorem

lim
n→∞

(
1+

r
n

)n
= e1 ≡ 2.718281828459 · · ·

we have

B(t) =
[

lim
n→∞

(
1+

r
n

)n
]t

= ert , t ≥ 0. (1.192)

Consider next the case that the interest rates vary in time. For simplicity, we first assume that
the interest rates are a step function of time. That is, the rate at time t is given by

r(t) = ri if ti−1 ≤ t ≤ ti, i = 1,2, . . . ,

where t0 = 0. Then, form (1.192), we have that

B(t1) = er1t1 (1.193)
B(t2)
B(t1)

= er2(t2−t1), and so on. (1.194)

Hence, for a time t such that tn−1 ≤ t ≤ tn we obtain

B(t) = exp

{
n−1

∑
k=1

rkδk + rn(t− tn−1)

}
, δk ≡ tk− tk−1. (1.195)

Recalling that the integral of any (Riemann) integrable function r(t) is the limit of the sum, that is,∫ t

0
r(u)du = lim

n→∞

[
n−1

∑
k=1

rkδk + rn(t− tn−1)

]
, (1.196)
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where the limit is taken over all possible sequences of partitions of the interval [0, t]. The next
theorem summarizes the concept of interest rate in continuous time.

Theorem 1.7.1. Suppose that the instantaneous interest rate at time t is r(t). If the interest is
continuous compounding, then, the time t money-market account is given by

B(t) = exp
{∫ t

0
r(u)du

}
, t ≥ 0. (1.197)

Remark: We notice that, even though the interest rates r(t) are random, the money market is
given by (1.197); in which case, B(t) is also a random variable.

1.7.2 Derivatives and Arbitrage Pricing
In mathematical finance, a risk-neutral measure, also called an equilibrium measure, or equivalent
martingale measure, is a probability measure such that each share price is exactly equal to the
discounted expectation of the share price under this measure [125, 126, 128, 146, 149, 161]. This
is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset
pricing, which implies that in a complete market a derivative’s price is the discounted expected
value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only
if the market is arbitrage-free.

In discrete, that is, finite state market, the following hold [271]

1. The First Fundamental Theorem of Asset Pricing: A discrete market, on a discrete probabil-
ity space (Ω,F ,P), is arbitrage-free if and only if, there exists at least one neutral probabil-
ity measure Q that is equivalent to the original probability measure, P.

2. The Second Fundamental Theorem of Asset Pricing: An arbitrage-free market (S,B) con-
sisting of a collection of stocks S and risk free bond B is complete if and only if there exists
a unique risk-neutral measure that is equivalent to P and has a numeraire B.
If S = (St)

T
t=0 is a semi-martingale with values in Rd then S does not allow for a free lunch

with vanishing risk if and only if there exists an equivalent martingale measure Q such that
S is a sigma-martingale under P.

Definition 1.7.1. The term “portfolio” refers to any combination of financial assets such as stocks,
bonds and cash. Portfolios may be held by individual investors and/or managed by financial pro-
fessionals, hedge funds, banks and other financial institutions. It is a generally accepted principle
that a portfolio is designed according to the investor’s risk tolerance, time frame and investment
objectives. The monetary value of each asset may influence the risk/reward ratio of the portfolio.

In mathematical finance, a replicating portfolio for a given asset or series of cash flows is a
portfolio of assets with the same properties (especially cash flows). This is meant in two distinct
senses: static replication, where the portfolio has the same cash flows as the reference asset (and no
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changes need to be made to maintain this), and dynamic replication, where the portfolio does not
have the same cash flows, but has the same “Greeks” as the reference asset, meaning that for small
(properly, infinitesimal) changes to underlying market parameters, the price of the asset and the
price of the portfolio change in the same way. Dynamic replication requires continual adjustment,
as the asset and portfolio are only assumed to behave similarly at a single point (mathematically,
their partial derivatives are equal at a single point).

In financial mathematics, a self-financing portfolio is a portfolio having the feature that, if there
is no exogenous infusion or withdrawal of money, the purchase of a new asset must be financed by
the sale of an old one [43].

Definition 1.7.2. Let hi(t) denote the number of shares of stock number ’i’ in the portfolio at time
t, and Si(t) the price of stock number ’i’ in a frictionless market with trading in continuous time.
Let

V (t) =
N

∑
i=1

hi(t)Si(t). (1.198)

Then the portfolio (h1(t), . . . ,hn(t)) is self-financing if

dV (t) =
n

∑
i=1

hi(t)dSi(t). (1.199)

1.7.3 Pricing Derivatives

Discount Bonds and Coupon-Bearing Bonds
A discount bond is a bond that is issued for less than its par–or face–value [271, 439]. A financial
security that promises to pay a single cash-flow of magnitude F at a future time, called maturity,
is called a discount bond, and the amount of F is called the face value. By taking F as a unit of
money, we can assume without loss of generality that F = 1.

A bond more commonly traded in practice is a security that promises to pay a stream of certain
payments, called coupons, at future times as well as the face value at maturity. Such a bond is
called a coupon-bearing bond and its cash-flow, if it pays coupon Ci at time ti as shown in the
Figure 1.4. Since each cash-flow Ci is equivalent to a cash-flow at a discount bond with face value
Ci, a coupon bearing bond can be thought of as a portfolio of discount bonds with face values Ci.

There are two types of bonds, default-free bonds and corporate bonds. A corporate bond issued
by a firm promises to pay a stream of payments; but there is a possibility that the bond defaults
before maturity and cannot meet the debt obligations. That is, corporate bonds are exposed to the
credit risk. On the other hand, a default-free bond issued by the government such as U.S. involves
such no risk.

Suppose that the prices of default-free bonds for all maturities are observed in (or can be im-
puted from) from the market. Since the prices of default-free discount bonds with the same ma-
turity are the same, the discount bonds can be used as a benchmark of future values. Namely, let
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Bond Hold
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Figure 1.4: Illustration of the cash-flow of a bond coupon holder at different time period
before maturity.

v(t,T ), t ≤ T , be the time t price of the discount bond that pays 1 (B0) dollar for sure at maturity
T . Then the present value of the certain cash-flow B at future time T is given by Bv(t,T ), where t
denotes the current time. Of course, v(t, t) = 1. The function v(t,T ) with respect to T is called the
term structure of the default-free discount bonds. It is also called the discount function, since the
present value of 1(B0) dollar is paid at future time T is given by v(t,T ).

Yield to Maturity
Yield to maturity is the total return anticipated on a bond if the bond is held until maturity time
[153, 439]. Suppose that, at time t, an investor purchases a security for S(t) that pays S(T ) dollars
for sure at maturity T . The rate of return per unit of time, R(t,T ) say, from this investment is
defined by

R(t,T ) =
S(T )−S(t)
(T − t)S(t)

, t ≤ T. (1.200)

It follows that
S(T ) = S(t)[1+(T − t)R(t,T )].

Next, suppose that the rate of return per unit time is computed in the sense of compounded interests.
From (1.190), we then have

R(t,T ) = S(T ) = S(t)
[

1+
(T − t)Rn(t,T )

n

]n

, n = 1,2, . . . , (1.201)

where the subscript n in Rn(t,T ) means that the interests are compounded n times each year. De-
noting the rate of return per unit of time in the sense of the continuous compounding by using
Y (t,T ) = lim

n→∞
Rn(t,T ), it follows from (1.192) that

S(T ) = S(t)e(T−t)Y (t,T ), t ≤ T, (1.202)
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or, equivalently,

Y (t,T ) =
1

t−T
log
(

S(T )
S(t)

)
, t ≤ T. (1.203)

The rate of return per unit of time in the continuous compounding is called the yield to maturity
(or simply the yield). In particular, if the security is the default-free discount bond with maturity
T , that is, S(t) = v(t,T ) and S(T ) = 1, the we obtain

Y (t,T ) =− logv(t,T )
t−T

, t ≤ T. (1.204)

In what follows, we use Equation (1.204) as the definition of yield of the discount bond.

1.7.4 Options
Options have have been extensively studied especially after the major breakthrough by Black and
Scholes [161], whose work on a new method to determine the value of derivatives won the Nobel
prize in 1997 being awarded to Professor Robert C. Merton, Harvard University, Cambridge, USA
and Professor Myron S. Scholes, Stanford University, Stanford, USA [46]. More extensive work
has been done in modelling options including [65, 99, 100, 113, 126, 196, 240, 241, 242, 380, 422].
These models have also been extended to methods involving Lie groups and Lie Symmetries as
studied in [192, 244, 350].

An option is the simplest example of derivative instrument. An option is a contract that gives
the right (but not the obligation) to its holder to buy or sell some amount of the underlying asset at
a future date, for a specified price. Therefore in an option contract we need to specify:

(i) an underlying asset;

(ii) an exercise price K, the so-called strike price;

(iii) a date T , the so called maturity.

A Call option gives the right to buy, whilst a Put option gives the right to sell. An option
is called European if the right to buy or sell can be exercised only at maturity, and it is called
American if it can be exercised at any time before maturity.

Let us consider a European call option with strike price K, maturity T and let us denote the
underlying asset at maturity by ST . At the time T we have two possibilities as may be depicted in
the Figure 1.5 below.

(i) If ST > K, the pay-off of the options is equal to ST −K, corresponding to the profit obtained
by exercising the option (that is, by buying the underlying asset at price K and then selling
it at the market price ST ).

(ii) If ST < K, exercising the option is not profitable and the pay-off is zero.
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prize in 1997 being awarded to Professor Robert C. Merton, Harvard University, Cambridge, USA
and Professor Myron S. Scholes, Stanford University, Stanford, USA [46]. More extensive work
has been done in modelling options including [65, 99, 100, 113, 126, 196, 240, 241, 242, 380, 422].
These models have also been extended to methods involving Lie groups and Lie Symmetries as
studied in [192, 244, 350].

An option is the simplest example of derivative instrument. An option is a contract that gives
the right (but not the obligation) to its holder to buy or sell some amount of the underlying asset at
a future date, for a specified price. Therefore in an option contract we need to specify:

(i) an underlying asset;

(ii) an exercise price K, the so-called strike price;

(iii) a date T , the so called maturity.

A Call option gives the right to buy, whilst a Put option gives the right to sell. An option
is called European if the right to buy or sell can be exercised only at maturity, and it is called
American if it can be exercised at any time before maturity.

Let us consider a European call option with strike price K, maturity T and let us denote the
underlying asset at maturity by ST . At the time T we have two possibilities as may be depicted in
the Figure 1.5 below.

(i) If ST > K, the pay-off of the options is equal to ST −K, corresponding to the profit obtained
by exercising the option (that is, by buying the underlying asset at price K and then selling
it at the market price ST ).

(ii) If ST < K, exercising the option is not profitable and the pay-off is zero.
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Figure 1.5: Illustration of asset trajectories for two assets A, B and general N with the same
maturity time T.

In conclusion, the pay-off of a European option of a European Call option is

(ST −K)+ = max{ST −K,0}.

The graphical representation of the pay-off as a function of ST for a Call option is as shown in
Figure 1.6(a): We notice that the pay-off increases with ST and gives a potentially unlimited profit.
Analogously, we see that the pay-off of a European Put option is

(K−ST )
+ = max{K−ST ,0}.

The graphical representation of the pay-off as a function of ST for a Put option is as shown in the
Figure 1.6(b).

Call and Put options are the basic derivative instruments and for this reason they are often called
plain vanilla options. Combining such types of options, it is possible to build new derivatives: for
example, by buying a Call and a Put option with the same underlying asset, strike and maturity
we obtain a derivative, the so called Straddle, whose pay-off increases the more ST is far from
the strike as shown in Figure 1.6(c). This kind of derivative interesting when one expects a wide
movement of the price of the underlying asset without being able to foresee the direction.
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Figure 1.6: Illustration of the pay-off, ST , for the European: (a) Call option, (b) Put option
and (c) Straddle

1.7.5 Optimization Model in Finance
We consider an investment where the investor views the outcome of any investment in probabilistic
terms; that is, he thinks of the possible results as some sort of probability distribution with two
parameters representing the expectation or returns and the risk factors. Therefore, in assessing the
desirability of a particular investment, the investor is willing to take decision on the basis of say
two parameters of such a probability distribution, that is, its expected returns E[X ] = µ value and
the risk measure or standard deviation σ , where X is the random variable of the distribution.

The above above ideas can best be described in terms of utility function

U = f (EB,σB) (1.205)

where EB is the expected wealth, σw the predicted standard deviation of the possible divergence of
the future wealth EB from the actual expected wealth EB and B is the total bank deposits, investment
or wealth.

Under normal investment environment, every investor prefers a higher expected future wealth
to lower ones, leaving other factors constant,

dU
dEB

> 0. (1.206)

In an attempt to achieve this, however, the investor tends to exhibit the scenario of risk-aversion,
that is, opting for an investment offering a lower value of σB to the one with a greater level inde-
pendent of the level of EB,

dU
dσB

< 0. (1.207)

These assumptions suggests that the indifference curves relating EB and σB are upward sloping,
see Figure 1.7.5.
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Figure 1.7: AFBDC is the investment opportunity curves.

Assuming the investor decides to commit a given amount Bt of his present wealth to a given
investment. Setting Bt+1 to be the terminal wealth and r the rate of return on his investment, then

r =
Bt+1−Bt

Bt
, (1.208)

implying that
Bt+1 = rBt +Bt = (r+1)Bt , (1.209)

The above relationship (1.205) makes possible to express the investor’s utility in terms of in-
terest rates r, since the terminal wealth B is directly related to the rate of return

U = f (Er,σr). (1.210)

Figure 1.7.5 summarizes the mode of investor preferences in a family of indifference curves,
that is the investment opportunity curves, which are successive curves that indicate higher levels of
utility as one moves down or to the right.

Therefore, the model of investment behaviour considers the investor as aiming at investing
in investment opportunities that maximizes his utility in terms of future expected returns. Such
investments available to to the investor may be represented in the EB and σB plane. If all such
investment plans involve some risk, the area composed of such points will posses an appearance
similar to that shown in Figure 1.7.5.

According to Figure 1.7.5, the investor will choose from among all possible plans the invest-
ment that places him on the indifference curve representing the highest level of utility in this case
point F. The decision can be made in two stages, that is, first find the set of efficient investment
plan, and second choose one that is most optimal from among this set.
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An investment plan is said to be efficient or optimum if and only if there is no alternative with
either

(i) the same EB and a lower σB,

(ii) the same σB and and a higher EB, or higher EB and a lower σB

Thus, from Figure 1.7.5 the investment Z is inefficient (not optimum) since investments B,C and D
dominate it, among other factors allows arbitrage. The only plans which would be chosen must be
along the lower right-hand boundary, AFBDCX-the investment opportunity curve. More detailed
discussion of the same principle of investment plan can be got form [423].

Generally, optimization models in finance are constructed based on Markowitz theory, [320],
though these models may vary dependent on the different styles of the investors that may include
optimal costs, returns and risk on the investment.

The standard mean-variance risk measurement model [320] with N− kinds of assets available
for investment options, if the yield of the i-th asset during the j−period is si j, i = 1,2, . . . ,N,
j = 1,2, . . . ,M, the proportion of the total assets of the i−th asset is xi, i = 1,2, . . . ,N, the average
yield and its variance of the M−th period of the i−th security are given by

β̄i =
1
M

M

∑
j=1

si j, σ
2
i =

M

∑
j=1

(si j− s̄i)
2.

The covariance of the i-th and j-th assets yield can be expressed as

σik =
1
M

M

∑
j=1

(si j− s̄i)(si j− s̄k).

The investment risk can be defined as

V =
N

∑
i=1

σ
2
i x2

i +2
N−1

∑
i=1

N

∑
j=i+1

σi jxix j. (1.211)

Denoting by x = (x1,x2, . . . ,xN)
> as the portfolio vector, then the investment risk V given in

(1.211) can be expressed as
V = x>Qx, (1.212)

where

Q =


σ11 σ12 . . . σ1N

σ21 σ22 . . . σ2N
...

...
. . .

...
σN1 σN2 . . . σNN

 ,


σi j = σ i
i , if i = j

σik = σki, if i 6= k
i, j = 1,2, . . . ,N

which is a symmetric and semidefinite matrix.
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Denoting the yield vector by s̄ = (s̄1, s̄2, . . . , s̄N)
>, then we can express the investment yield as

S =
N

∑
i=1

s̄ixi = x>s̄.

In the case of an investment allowing short term trading, if the decision is to minimize the risk,
the one constructs the risk model as follows:

minimize V = x>Qx subject to
N

∑
i=1

xi = 1. (1.213)

The risk minimization model in (1.213) is only based on risk, not considering other factors like
returns, interest rate, and cost of investments. In such optimization problems of financial portfolio,
if different conditions are considered, then the optimization model can be reformulated differently.
For instance, if one considers how to purchase a number of assets from N kinds of risky assets, the
variance risk is as small as possible under the premise of the yield to a certain level. Based on the
above conditions, we can construct the the following model [26]

min V = x>Qx

s.t
N

∑
i=1

xi = 1

N

∑
i=1

s̄ixi = sp

xi ≥ 0, i = 1,2, . . . ,N.

(1.214)

where sp is the expected return of investment portfolio.
The set of points that satisfies such an optimization problem are found to lie on a a boundary

curve or path also called an efficient frontier [320].

Definition 1.7.3. The efficient frontier is the set of of optimal portfolios that offer the highest
expected returns for a defined level of risk or the lowest risk for a given level of expected returns.
Portfolios that lie below the efficient frontier are called sub-optimal because they do not provide
enough returns for the level of risk. The portfolios that cluster to the right of the efficient frontier
are sub-optimal because they have a higher level of risk for a defined rate of return.

The Figure 1.7.5 illustrates the structure of an efficient frontier. Each of the points on the sur-
face or boundary line represents the most optimal or extreme points whose portfolio or combination
as assets or securities would maximize the returns at any given level of standard deviation, risk or
volatility. The points that are inferior to the efficient frontier represent the assets or securities who
portfolio or combination would either offer less returns or same returns as the points on the efficient
frontier but with high risk or they may offer less returns with the same high risk.

This concept of portfolio optimization and construction of the efficient frontier in asset price
is our major motivation in pricing assets or securities using extreme points of the Vandermonde
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Figure 1.8: Illustration of the portfolio construction using optimal or extreme points lying on
the efficient frontier or boundary surface

determinant. In this case efficient frontier represents the boundary of a smooth surface for example
the p-sphere, cubes, ellipsoids, and paraboloids that preserve convexity which all form a family of
the p−norms in N−dimension [348]. In the next section we describe the set up of the polynomial
based models and pricing with extreme points of the Vandermonde determinant.
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1.8 Summaries of Chapters

Chapter 1
This chapter gives the general introduction of the major concepts to be used in the later chap-
ters. The historic background of the Vandermonde matrix and its determinant, the structure and
definition of Vandermonde matrix, Vandermonde determinant, generalized Vandermonde matrix,
general properties of Vandermonde matrix and its determinant that some properties of the Vander-
monde matrix and Vandermonde determinant that make it more applicable in both scientific and
mathematical computations, and some of its relationships with other determinants.

Chapter 2
This chapter is based on Paper A [347] and discusses the generalized Vandermonde interpola-
tion polynomial based on divided differences. Some results regarding the appropriateness for this
method for curve-fitting and approximation are discussed. The proposed interpolation technique
will be tested by construction of approximative models based on joint eigenvalue probability dis-
tribution and classical orthogonal polynomials. More details of the are as discussed in Section 2.1,
Section 2.2 we define the weighted Fekete points, Section 2.3 the weighted Lebesgue constant and
Lebesgue function and these concepts are applied in Section 2.4 that connects the Gaussian or-
thogonal ensembles with weighted Fekete points which leads to Section 2.5 that gives the possible
interpolation polynomial fitting based on different types of weights, that is, the Jacobi, Laguerre
and Hermite whose zeros would be the weighted Fekete points for experimental data.

Chapter 3
This chapter is based on Paper B [348] and investigates the extreme points of the Vandermonde
determinant on surfaces implicitly determined by a univariate polynomial in higher dimension mo-
tivated by results of optimization of Vandermonde determinant by Lagrange multiplier explained
in [305]. We derived polynomial expressions that has the coordinates of the extreme points as
roots when the surface is a sphere or cube as in Section 3.1.1 critical points on surfaces given by a
first degree univariate polynomial, Section 3.1.2 Critical points on surfaces given by a second de-
gree univariate polynomial, Section 3.2 Critical points on the sphere defined by a p-norm in which
higher degree univariate polynomials are computed, and Section 3.3 extends the results of extreme
points of Vandermonde determinants to cubes and intersections of planes.

Chapter 4
This chapter is based on Paper C [342] and studies the symmetric group properties of extreme
points of the Vandermonde determinant and Schur polynomials. We applied these symmetric group
properties to investigate the relationship between the extreme points Vandermonde determinant
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and Schur polynomials. In Section 4.1 discusses the symmetric group properties of Vandermonde
Matrix and its Determinant, Section 4.2 gives the derivatives, extreme points of Vandermonde
determinants and Schur polynomials, Section 4.3 explores the extreme points of Schur polynomials
on certain surfaces and given by zeros of classical orthogonal polynomial, Section 4.4 extends the
extreme points of generalized Vandermonde determinant and Schur polynomial to the Szegö Limit
Theorems, and Section 4.5 gives the application of extreme points of Vandermonde determinant in
interpolation with symmetric polynomials and Schur polynomials.

Chapter 5

This chapter is based on Paper D [349] and discusses the optimization of the Wishart joint eigen-
value probability density distribution Based on the Vandermonde Determinant we were motivated
by the fact that a number of models from mathematics, physics, probability theory and statistics
can be described in terms of Wishart matrices and their eigenvalues as in 5.1. The most promi-
nent example being the Gaussian orthogonal ensembles of the spectrum of Wishart type matrix.
We aimed to expressing extreme points of the joint eigenvalue probability density distribution of a
Wishart matrix using optimisation techniques for the Vandermonde determinant over certain sur-
faces implicitly defined by univariate polynomials which is illustrated in Section 5.2.

Chapter 6

This chapter is based on Paper E [346] and studies the properties of the extreme points of the joint
eigenvalue probability density function of the Wishart matrix we established the usefulness of poly-
nomial decomposition and the properties of the extreme points of the joint eigenvalue probability
density function in optimization of condition number of the Vandermonde and Wishart matrices
by the technique of maximizing the Vandermonde determinant which is explained in detail in Sec-
tion 6.1.

We also established that the condition number of the Vandermonde matrix is inversely propor-
tional to the absolute value of its determinant while the condition of the Wishart matrix is inversely
proportional to the square of the Vandermonde determinant. Therefore, the extreme points of the
joint probability density function of the Wishart matrix that maximize the Vandermonde determi-
nant can be used to minimize the condition number of both the Vandermonde determinant and the
Wishart matrix. The points that maximizes the Vandermonde determinant are often referred to as
Fekete points as in Section 6.2.

We were also able to illustrate that indeed the extreme points of the Vandermonde determinant
are indeed related to the eigenvalues of the Wishart and these extreme points have a joint eigen-
value density function as the Gaussian ensembles. These points which are also zero of classical
orthogonal polynomials provide the most stable and economical interpolating points as explained
in Section 6.3.
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Theorems, and Section 4.5 gives the application of extreme points of Vandermonde determinant in
interpolation with symmetric polynomials and Schur polynomials.

Chapter 5

This chapter is based on Paper D [349] and discusses the optimization of the Wishart joint eigen-
value probability density distribution Based on the Vandermonde Determinant we were motivated
by the fact that a number of models from mathematics, physics, probability theory and statistics
can be described in terms of Wishart matrices and their eigenvalues as in 5.1. The most promi-
nent example being the Gaussian orthogonal ensembles of the spectrum of Wishart type matrix.
We aimed to expressing extreme points of the joint eigenvalue probability density distribution of a
Wishart matrix using optimisation techniques for the Vandermonde determinant over certain sur-
faces implicitly defined by univariate polynomials which is illustrated in Section 5.2.

Chapter 6

This chapter is based on Paper E [346] and studies the properties of the extreme points of the joint
eigenvalue probability density function of the Wishart matrix we established the usefulness of poly-
nomial decomposition and the properties of the extreme points of the joint eigenvalue probability
density function in optimization of condition number of the Vandermonde and Wishart matrices
by the technique of maximizing the Vandermonde determinant which is explained in detail in Sec-
tion 6.1.

We also established that the condition number of the Vandermonde matrix is inversely propor-
tional to the absolute value of its determinant while the condition of the Wishart matrix is inversely
proportional to the square of the Vandermonde determinant. Therefore, the extreme points of the
joint probability density function of the Wishart matrix that maximize the Vandermonde determi-
nant can be used to minimize the condition number of both the Vandermonde determinant and the
Wishart matrix. The points that maximizes the Vandermonde determinant are often referred to as
Fekete points as in Section 6.2.

We were also able to illustrate that indeed the extreme points of the Vandermonde determinant
are indeed related to the eigenvalues of the Wishart and these extreme points have a joint eigen-
value density function as the Gaussian ensembles. These points which are also zero of classical
orthogonal polynomials provide the most stable and economical interpolating points as explained
in Section 6.3.
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Summaries of Chapters

Chapter 7
This chapter is based on Paper F [343] and investigates the connections between the extreme points
of Vandermonde determinant and minimizing risk measure in financial mathematics. The extreme
points of the Vandermonde determinant optimized over various surfaces were found helpful in ap-
proximating the efficient frontier and can play a useful role in asset pricing and portfolio construc-
tion. For instance, to determine most appropriate asset allocation, that is, which assets can make
the best combination based on their risk measure to be able to maximize the returns by minimizing
the risk. Here extreme points of the Vandermonde determinant we found helpful in constructing the
most suitable path to represent the risk-returns trade off in which case indicates how the potential
returns rises or falls with with increase in risk which is discussed in Section 7.1.

The pricing model also can constructed using the extreme points of Vandermonde determinant
once the right asset allocation has been made. This can help to divide the capital equitably between
the most appropriate and optimal assets. This model can continuously be assessed by use of suitable
portfolio weights depending on the available information as in Section 7.2.

Chapter 8
This chapter is based on Paper G [344] and investigates group properties of the Wishart distribution
on symmetric vones in Jordan algebra. The Wishart probability distributions was constructed on
the basis of symmetric cones and how this extends to higher dimension as discussed in Section
8.1. This density is mainly characterised by the structure of the Vandermonde determinant and the
exponential weight that is dependent on the trace of the given matrix by use of Lassalle measure
on symmetric cones and probability distribution in Section 8.2. The symmetric cones especially
the Gindikin set form a suitable basis for the construction of the degenerate and non-degenerate
Wishart distributions in the field of Herm(m,C), Herm(m,H), Herm(3,O) denotes respectively the
Jordan algebra of all Hermitian matrices of size m×m with complex entries, the skew field H of
quaternions, and the algebra O of octonions as discussed in Section 8.3.

Chapter 9
This chapter is based on Paper H [345] and explores the symmetric cones especially the Gindikin
set that forms a suitable basis for the construction of the degenerate and non-degenerate Wishart
distributions in the field of Herm(m,C), Herm(m,H), Herm(3,O) which denotes, respectively, the
Jordan algebra of all Hermitian matrices of size m×m with complex entries, the skew field H of
quaternions, and the algebra O of octonions.

We also illustrated the extreme points of the Vandermonde determinant and Wishart ensem-
bles on symmetric cones in Section 9.1 which gives the relationship between Gindikin set and
Wishart joint eigenvalue distribution. The generalization of the Wishart probability distributions in
higher dimension based on the boundary points of the symmetric cones as discussed in Section 9.2.
Further, the characterisation of the Wishart density by the general structure of the Vandermonde
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Conclusion

The thesis mainly discusses the extreme points of the Vandermonde determinant on various sur-
faces, their applications in numerical approximation, random matrix theory and financial mathe-
matics. Some mathematical models that employ these extreme points such as curve fitting, data
smoothing, experimental design, electrostatics, risk control in finance and method for finding these
extreme points on certain surfaces are demonstrated.

In Chapter 1, we explored the theoretical background necessary for later chapters. We review
the historical background of the Vandermonde matrix and its determinant, some of its properties
based on group theory, symmetric polynomials, classical orthogonal polynomials and random ma-
trix theory.

In Chapter 2, we established the relationship between generalized Vandermonde interpolation
polynomial based and divided difference. We extended this relationship to the concepts of weighted
Fekete points, joint eigenvalue probability distributions and zeros of the classical orthogonal poly-
nomials as stable interpolation points.

In Chapter 3, we generated univariate polynomials whose zeros are the extreme points of Van-
dermonde determinant when optimized on p-spheres of finite dimension. We also give the gener-
alization of the extreme points of Vandermonde determinant on various surfaces, which are given
as roots of classical orthogonal polynomials.

In Chapter 4, obtained the symmetric group properties of the extreme points of Vandermonde
and Schur polynomials. We also generated results on optimization of Schur polynomials on various
surfaces which are also given as zeros of classical orthogonal polynomials in relation with gener-
alized Vandermonde determinant. We illustrated the use of these extreme points in computation of
Szego limits, interpolation with symmetric polynomials and Schur polynomials.

In Chapter 5, we applied the extreme points of Vandermonde determinant in optimization of the
joint eigenvalue probability density distribution of a Wishart matrix on surfaces implicitly defined
by univariate polynomials. We illustrated our results on the p-sphere.

In Chapter 6, we applied the extreme points of the vandermonde determinant that maximize
the joint eigenvalue probability density distribution in computation of the condition numbers of the
Vandermonde and Wishart matrices which is necessary in characterization of stability of Vander-
monde matrix.

In Chapter 7, we demonstrated use of the extreme points of Vandermonde determinants as
minimizing risk measures in financial mathematics. This was illustrated with an application to
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optimal portfolio selection.
In Chapter 8, we constructed the Wishart probability distributions in higher dimension based

on the symmetric cones in Jordan algebras. The the non-degenerate Wishart distribution and de-
generate Wishart distribution were derived on both the continuous and discrete part of the Gindikin
set.

In Chapter 9, we illustrated the extreme points of the Vandermonde determinant which are also
zeros of Laguerre orthogonal polynomial in computation of the optimal points of Wishart joint
eigenvalue probability distributions based on the boundary points of the Gindikin set.
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renferment. Journal de l’Ecolé Polytechnique, 10(17), 29–112, 1815. Reprinted in Euvres
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de l’École Polytechnique, xviie Cahier, Tome x, 64–90, 1815.

[80] Cayley Arthur. A memoir on the theory of matrices. Philosophical Transactions of the Royal
Society of London, 148, 17–37, 1858.

[81] Cayley Arthur. Note sur la methode d’elimination de Bezout. J. Reine Angew. Math., 53,
366–367, 1857.

[82] Chen William Y. C., James Louck D. Interpolation for symmetric functions. Advances in
mathematics, 117(1), 147–156, 1996.
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26(4), 641–676, 1971.

[223] Heine Eduard. Handbuch der Kugelfunctionen, Theorie und Anwendungen. G. Reimer,
Berlin, 1878.

[224] Heineman Ellis Richard. Generalized Vandermonde determinants. Transactions of the
American Mathematical Society, 31(3), 464–476, July 1929.

[225] Helgason Sigurdur. Differential geometry, Lie groups, and symmetric spaces, Pure and Ap-
plied Mathematics, vol. 80. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers],
New York–London, 1978.

[226] Helgert Hermann J. Alternant codes. Information and Control, 26, 369–380, 1974.

[227] Helwig Karl–Heinz. Jordan–Algebren und symmetrische Räume. I. Math. Z. 115, 315–349,
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[308] Lundengård Karl, Österberg Jonas, Silvestrov Sergei. Optimization of the determinant of the
Vandermonde matrix and related matrices. AIP Conference Proceedings 1637, 627, 2014.
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Rančić M., (Eds.), Springer International Publishing, 2019.
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[347] Muhumuza Asaph K., Lundengård Karl, Österberg Jonas, Silvestrov Sergei, Mango John
M., Kakuba Godwin. The Generalized Vandermonde Interpolation Polynomial Based on
Divided Differences, SMTDA2018 Conference Proceedings, ISAST2018, 443–456, 2018.
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[381] Pólya George, Szegő Gabor. Problems and theorems in analysis. Springer, New York, 1945.

[382] Powell Michael J. D. On the maximum errors of polynomial approximations defined by
interpolation and by least squares criteria. Comput. J., 9, 404–407, 1967.

324

Extreme points of Vandermonde determinant in numerical approximation, random
matrix theory and financial mathematics

[367] Novak Jonathan I. Topics in Combinatorics and Random Matrix Theory. Kingston, Ontario,
Canada, 2009.

[368] Ore Øystein. On a special class of polynomials. Transactions of the American Mathematical
Society, 35(3), 559–584, 1933.
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[398] Rossi Hugo E., Vergne Michèle. Analytic continuation of the holomorphic discrete series of
a semi-simple Lie group. Acta Math. 136(1-2), 1–59, 1976.

[399] Rouge Richard, Nicole El Karoui. Pricing via utility maximization and entropy. Mathemat-
ical Finance, 10(2), 259–276, 2000.

[400] Rowan Hamilton William. The Mathematical Papers of Sir William Rowan Hamilton. Vol.
3. CUP Archive, 1931.

[401] Roy Samarendra N. p-Statistics or some generalisations in analysis of variance appropriate
to multivariate problems. Sankhya 4(3), 381–396, 1939.

[402] Rubin Stanley G., Khosla Prem K. Polynomial interpolation methods for viscous flow cal-
culation. Journal of Computational Physics, 24(3), 217–244, 1977.

[403] Rubinstein Abraham, Romero Carlos, Paolone Mario, Rachidi Farhad, Rubinstein Mar-
cos, Zweiacker Pierre, Daout Bertrand. Lightning measurement station on mount Säntis
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année tirés des registres de cette académie. Année MDCCLXXII Seconde Partie, 516–532,
1776.
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d’Histoire des Mathématiques, 9(1), 43–77, 2013.

[506] Zamarashkin Nikolai Leonidovich, Tyrtyshnikov Eugene Evgenévich. Distribution of
Eigenvalues and singular numbers of Toeplitz matrices under weakened requirements of
generating function. Mat. Sb. 188, 83–92, 1997.

[507] Zanon N., Pichard J.-L. Random matrix theory and universal statistics for disordered quan-
tum conductors with spin-dependent hopping. Journal de Physique, 49(6), 907–920, 1988.

[508] Zhu You Lan, Wu Xiao Nan, Chern I–Liang. Derivative securities and difference methods.
Springer Finance. Springer-Verlag, New York, 2004.

[509] Ziegler Klaus. Random Matrix Approach to Light Scattering on Complex Particles. In The
Fifth International Kharkov Symposium, Ukraine, June 21–26 2004, on Physics and Engi-
neering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No. 04EX828), 1,
208–210, 2004.

[510] Ziliak Stephen T. How large are your G-values? Try Gosset’s Guinnessometrics when a
little “p” is not enough. Amer. Statist. 73(1), 281–290 (2019).
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