ADVANCED LEVEL PHYSICS PERFORMANCE AMONG UGANDA STUDENTS AS A FUNCTION OF ORDINARY LEVEL PHYSICS AND MATHEMATICS PERFORMANCE

BY

LEONARD WAMBI WAMAKOTE

A RESEARCH DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF EDUCATION OF MAKERERE UNIVERSITY

OCTOBER, 1990

DECLARATION

I, Leonard Wambi Wamakote, declare that this is my own work and it has never before been submitted to this or any other university or institution of higher learning for the award of a degree or other qualification.

Signed.....

LEONARD WAMBI WAMAKOTE

Date:....

Counter – signed.....

EMMANUEL KIGONGO-MUSIGE

(SUPERVISOR)

Date:

DEDICATION

This work is dedicated to my father, Mr. Charles Peter Wambi for having successfully orchestrated the various forces responsible for my eventual success.

"The glory of young men is their strength; the attractiveness of old men is their gray head."

Proverbs 20:29

ACKNOWLEDGMENTS

This work would have been impossible to complete without the helpful advice and assistance from various individuals and bodies. I am indebted to the ministry of education for having funded this study. The Headmaster, Bulucheke Secondary School and the Chief Education Officer in this respect deserve special thanks for having seconded my application for the course.

I owe special gratitude to the Ugandan National Examination Board for their kind permission to use their records on students' performance for this study. Several officials working with this board offered me their very kind and patient assistance during the tedious process of digging out the records. Even though I have not cited them by name here. I will always remember with appreciation their assistance.

I am indebted to Mr. Cyprian Cele whose study provides the foundational framework for the present study. I hope that he will find it comforting to see some of his findings re-examined.

My supervisor. Mr. Emmanuel Kigongo – Musiige will always flare up my memory for his fatherly patience and courage in ensuring the completion of this project. The inconvenience that he suffered as a result of supervising this work, including the not infrequent need to work at odd hours cannot be soothed by any words of appreciation within my grasp. My special thanks also go to all my colleagues of the M.Ed. Programme (1989/90) especially those in the department of science and technical education and the members of staff in the school of education, especially the Dean. Prof. Jethro Opolot. Interaction with all of them greatly boosted my knowledge and experience.

The calculations involved in this study would have been too immense to be handled accurately by a human head. In this respect, I convey my heartfelt appreciation to Mr. Fab Nabugoomu of the Institute of Statistics and Applied Economics who diligently ran the calculations on computer. I cannot forget to mention, with thanks, the assistance of Mr. George Wamukota who carefully and neatly type-set this work.

It is indeed difficult to mention all the people who assisted me in one way or another during this course. But mine would be an incomplete task if I did not mention the large group of friends and relatives who assisted me both materially and morally to enable me complete this course. Listing all of you would certainly cover a separate report on its own, but rest assured I have all of you in mind.

Leonard Wambi Wamakote

Makerere University October 1990.

TABLE OF CONTENTS

Page

Title of study	(i)
Declaration	(ii)
Dedication	(iii)
Acknowledgments	(iv)
Table of contents	(vi)
List of tables and figures	(ix)
List of abbreviations used	(x)
Abstract	(xi)
CHAPTER ONE: INTRODUCTION	1
1.1 Background to the study	1
1.2 Statement of the problem	4
1.3 Significance of the study	5
1.4 Definition of terms	6
1.5 Limitations and delimitations	7
1.5.1 Limitations	7
1.5.2 Delimitations	8
CHAPTER TWO: REVIEW OF RELATED LITERATURE.	10
2.0 Introduction	10
2.1 Factors affecting performance in science	10
2.1.0 General	10
2.1.1. Home factors	11
2.1.2 Intelligence	12
2.1.3 Attitudes	13
2.1.4 School quality	14
2.1.5 Inter-disciplinary dependence	17
2.1.6 Gender differences	19
2.1.7 Examination Nature	21

2.2 Predicti	ion of performance in science	24
2.3 Summa	ary of literature review	28
2.4 Stateme	ent of Hypothesis	28
CHAPTER THREE	E: METHODOLOGY	29
3.1 Selection	on of subjects	29
3.2 Data co	ollection	30
3.3 Data ar	nalysis	31
3.3.0	General	31
3.3.1	Hypothesis Ho1	32
3.3.2	Hypothesis Ho2	33
3.3.3	Hypothesis Ho3	33
CHAPTER FOUR:	RESULTS	34
4.0 Genera	1	34
4.1 Hypoth	esis Ho1	36
4.2 Hypoth	esis Ho2	42
4.3 Hypoth	esis Ho3	43
CHAPTER FIVE:	DISCUSSION, CONCLUSION AND	
	RECOMMENDATIONS	47
5.1 Discuss	sion of results	47
5.1.0	General	47
5.1.1	. Prediction of performance in	
	A-level physics from	
	O-level physics and mathematics	. 48
5.2.1	Gender and prediction of performance	50
5.1.3	Gender and performance in physics	51
5.1.4	School quality and performance	
	in physics	53
5.1.5	Sex-school quality interaction	54

5.2 Summary of conclusions	55
5.2.1 Prediction of performance in	
A-level physics	55
5.2.2 Gender school quality and	
performance in physics	56
5.3 Recommendations	57
5.3.1 To students and teachers of	
physics	57
5.3.2 To the UNEB	58
5.3.3 To educational planners	59
5.3.4 To future researchers	60
REFERENCES	62

APPENDICES.....

66

LIST OF TABLES AND FIGURES

		Page
Table 4.1:	Descriptive statistics of predicator and	
	criterion variables	35
4.2:	Pearson's product-moment correlation	
	matrix between predicators and criteria	37
4.3:	Z-tests of significance for predicator-	
	criterion correlation coefficients	39
4.4:	Multiple regression analysis summary	
	for predicting performance in A-level	
	physics	40
4.5:	Summary ANOVA for regression model	41
4.6:	Z-tests for significance of differences	
	between male and female correlation	
	coefficients	. 42
4.7:	Sample sizes, Means and standard	
	deviations for overall performance in A- le	vel
	physics according to sex and O-level school	ol
	quality	44
4.8:	summary ANOVA for effects of sex and	
	O-level school on performance in A-level	
	Physics	45
Figur	re 4.3.1: Graphical representation of sex	
	X school quality interaction on	
	performance in A-level physics	45

LIST OF ABBREVIATIONS USED

- 1. A-level: Advanced Level (last two years of secondary education)
- 2. ANOVA: Analysis of Variance
- 3. A.S.E: Association of Science Education
- 4. C.E.S: Classroom Environment Study
- 5. G.C.E: General Certificate of Education
- 6. H.M.L: Her Majesty's Inspectors (U.K)
- 7. I.E.A: International Association for the Evaluation of Education Achievement.
- 8. I.Q: Intelligence Quotient
- 9. O-level: Ordinary Level (First four years of secondary education)
- 10. P.L.E: Primary Leaving Examination
- 11. U.A.C.E: Uganda Advanced Certificate of Education
- 12. U.C.E: Uganda Certificate of Education
- 13. UNEB: Uganda National Examination Board.

ABSTRACT

Performance in U.C.E. Physics and Mathematics is used as a selection criterion for admitting students to A-level physics. The extent to which a student's performance in A-level physics can be predicted from his performance in O-level physics and mathematics is reported.

460 students (364 males and 96 females) from 33 randomly selected A-level schools in Uganda who sat the U.C.E examinations in November, 1986 and the U.A.C.E examinations in March, 1989 were used in the study.

Using grades awarded by UNEB to these students in O-level physics 535 and mathematics 456 (as predictors) and A-level physics P510/1. P510/2. P510/3 and P510 (as the criteria). The following hypotheses were tested:

Ho1 "There is no significant correlation between performance in Olevel physics and mathematics and the corresponding performance in Alevel physics."

Ho2 "Males and females are equally predictable on performance in A-level physics."

Ho3 (a) "There is no difference in A-level physics performance of students from <u>low-performance</u> and those from <u>high performance</u> O-level schools.

(b) "Males and females perform equally well in A-level physics."

(c) "There is no interaction between sex and 0-level school quality in determining performance in A-level physics.

To test the first two hypotheses, Pearson's product-moment correlation coefficients were computed between the predictors and criteria and they were found to range between 0.34 and 0.47 for males: 0.35 and 0.68 for the females: and 0.33 and 0.49 for the entire group. All the correlation coefficients were found to be highly significant (p<0.0005) leading to a rejection of hypothesis Ho1. The correlations with the practical paper (P510/3) were found to be the lowest, possibly due to the low-weight given to the physics practical when grading the 0-level physics examination.

Overall performance in A-level physics was regressed on the performance in O-level physics and mathematics. The combination of physics and mathematics was found to improve the prediction of performance in A-level physics, explaining about 30% of the variation therein.

The significance of the differences between the correlation coefficients for each sex was tested using the Fisher Z- transformation. Females were found to be more predictable than males when overall performance in Alevel physics was considered. This difference in prediction, however, broke down when the individual physics papers were considered. Hypothesis Ho2 was thus rejected, only in part. Using the overall performance in A-level physics as the dependent variable. A two-way ANOVA was performed to test the significance of differences in performance due to sex and 0-level school quality. The school quality was established dichotomously judging from the overall performance of candidates in the school in 0-level physics. Schools whose mean-grade was better than the national mean were categorized as <u>high-performance</u> and for the reverse as <u>low-performance</u>.

Contrary to views expressed in current literature, the study found the performance of females to be significantly higher than that of males in Alevel physics. It was further found that students form high-performance 0level schools performed better than those from low-performance schools. On the interaction between sex and school quality it was found that the difference in performance between students from high-performance and low-performance schools was more marked among the females. The third hypothesis was thus rejected as well.

Plausible explanations for the above findings were given and as a result, recommendations were made to students, teachers, educational planners, UNEB and to future researchers.