

www.busitema.ac.ug

FACULTY OF ENGINEERING

DEPARTMENT OF MINING AND WATER RESOURCES ENGINEERING FINAL YEAR PROJECT REPORT

DESIGN AND CONSTRUCTION OF A WATER PURIFICATION SYSTEM TO REMOVE MERCURY FROM STREAM WATER.

CASE STUDY: MANYE VILLAGE, THRA PARISH, SIKUDA SUBCOUNTY, BUSIA DISTRICT

BY

MURUHURA NICKSON

BU/UP/2017/1518.

EMAIL: nicksonnellym@gmail.com

SUPERVISORS:

MAIN SUPERVISOR: MS. MARION ENGOLE

CO-SUPERVISOR: MR. BAGOLE CHRISTOPHER

A final year project proposal submitted to the Department of Water and Mining Engineering in partial fulfillment for the award of the Bachelor Degree of Science in Water Resources Engineering of Busitema University

ABSTRACT

This paper begins with an overview of the origin, magnitude, geographical distribution and health consequences of consumption of mercury contaminated water around the world and further zeroed down to Manye Village, Tira town council in Busia district. Access to safe drinking water in many developing countries is a challenge due to inadequate technology and low-income base to carry out proper treatment.

This study is designed to investigate the effectiveness of a three-chamber water purification system for potable water use to provide Manye village with treated water.

DECLARATION

I declare that this research proposal is my original work, except where due acknowledgement has been made. I declare that this work has never been submitted to this University or to any other institution for partial fulfillment for any award.

MURUHURA NICKSON

BU/UP/2017/1518				
SIGNATURE.	DATE	1	1	

APPROVAL

This project proposal report has been submitted for examination to the Faculty of Engineering with my due approval as the University Supervisor.

MAIN SUPERVISOR	
MS. MARION ENGOLE	
SIGNATURE	DATE
CO-SUPERVISOR	
MR. BAGOLE CHRISTOPHER	
SIGNATURE	DATE

List of Acronyms and Abbreviations.

THM- trihalomethane

TOC- Total organic carbon

DOC- Dissolved organic carbon

COD- Chemical oxygen demand

BOD- Biological oxygen demand

Contents

ABSTRAC'	T	. 1
DECLARA	ATION	i
APPROVA	L	ii
List of Acro	onyms and Abbreviations.	iv
1. CHAP	TER ONE: INTRODUCTION	. 1
1.1. BA	ACKGROUND	. 1
1.2. Pr	oblem statement	. 3
1.3. Th	ne Objectives	. 3
1.3.1.	The Main Objective	3
1.3.2.	Specific objectives.	. 3
1.4. Ju	stification.	. 3
1.5. Sc	ope of this study	. 4
1.5.1.	Geographical scope.	. 4
1.1.1.	Conceptual scope	. 4
1.1.2.	Time scope	. 4
2. CHAP	TER TWO: LITERATURE REVIEW	. 6
2.1. Ge	eneral characterization of waste water from mines and gold processing plants	. 6
2.1.1.	Components of waste water from mines and the gold processing plant	. 6
2.2. Tr	eatment stages	12
2.2.1.	Coagulation	12
2.2.2.	Activated carbon.	14
2.2.3.	Disinfection	17
2.2.4.	Lime softening.	17
2.3. PU	JMPS	18

2.3.1.	The choice of a pump	. 21
3. CHAP	TER THREE: METHODOLOGY	. 24
3.1. Int	troduction	. 24
3.2. M	ETHODOLOGY FOR SPECIFIC OBJECTIVE ONE: To characterize waste	<u>,</u>
water eff	luent from the mines and the processing plants.	. 25
3.2.1.	Determination of water demand	. 30
3.2.2.	Field data analysis	. 31
3.3. Ml	ETHODOLOGY FOR SPECIFIC OBJECTIVE TWO: To design the pumping uni	it,
coagulatio	on, Granular activated carbon and lime softening chambers	. 32
3.3.1.	PUMPING UNIT DESIGN	. 32
3.4. De	signing the coagulation chamber	. 36
3.5. De	signing a flocculation rod.	. 37
3.6. De	signing the Granular Activated Carbon chamber	. 37
3.6.1.	Flow rate calculation:	. 38
3.6.2.	Calculating the head loss across the filter.	. 40
3.6.3.	Filtration rate of the activated carbon filter unit	. 40
3.7. De	signing the lime softening chamber	. 41
3.8. MET	THODOLOGY FOR SPECIFIC OBJECTIVE THREE: To construct the syst	em
prototype a	and test its performance.	. 42
3.8.1.	Constructing the system prototype.	. 42
3.8.2.	Testing the system prototype.	. 43
3.9. M	ETHODOLOGY FOR SPECIFIC OBJECTIVE FOUR: Economic analysis	. 46
3.9.1.	Maintenance cost	. 47
4.0 CH	HAPTER FOUR: RESULTS AND DISCUSSION	. 48
4.2 Gene	ral system efficiency	. 53
5.0 CHAPT	TER FIVE: CONCLUSION AND RECOMMENDATIONS.	. 57

5.2	RECOMMENDATIONS	57
6.0 RE	FERENCES	58
7 0 AP	PPENDIX	60

List of figures

Figure 1 SHOWING A MAP EXTRACT OF TIRA GOLD MINING PARISH	4
Figure 2 SHOWING THE CONCEPTUAL DIAGRAM	4
Figure 3 showing the conceptual diagram	5
Figure 4 showing a centrifugal pump	20
Figure 5 Example solar-powered pump performance curves for a positive displacement pump	. 22
Figure 6 Example solar-powered pump performance curves for a centrifugal pump	22
Figure 7 Showing A graph comparing the water quality parameters from two points of Manye	;
stream in Tira-Busia	29
Figure 8 showing A graph showing mercury contents at two sampling points of Manye	
stream in Tiira Town council, Busia district	30
Figure 9 SHOWING STATIC HEAD	34
Figure 10 showing Relation of Static and Dynamic Heads	34
Figure 11 showing how to determine the dynamic viscosity of water at various temperatures	39
Figure 12 showing threading of 1-inch pipe pieces	42
Figure 13 showing characterization of the raw water samples through laboratory tests	. 44
Figure 14 showing mercury removal efficiency for each treatment chamber	45
Figure 15 showing coagulation chamber efficiency	50
Figure 16 showing how to determine the dynamic viscosity of water	55
Figure 17 showing the centrigugal pump used in the pumping unit	60
Figure 18 Showing reagents used for treatment	60
Figure 19 showing picking of the water sample	61
Figure 20 showing the painting process of the chamber stands	61
Figure 21 showing a process of testing of final parameters from the purification system	62